
0 [image: image1.wmf]ã

SAP AG 2002

Appendix

l

This section contains supplementary

material to

be used

for

reference.

l

This

material

is

not

part of the standard course.

l

T

he instructor may

not cover

this material

during the course presentation.

[image: image2.wmf]ã

SAP

AG 2002

l

Create transaction variants that you can assign to

users using the above methods.

At the conclusion of this topic, you will be able to:

Personalizing Transactions:

Objectives

· There are ways to set single transactions to the needs of your enterprise or individual user groups. In this unit, you will see how a transaction can be simplified without being modified.

[image: image3.wmf]ã

SAP AG 2002

Transaction Variants:

Objectives

l

Simplify system by suppressing functions that are not

required:

l

Predefine fields

l

Revoke ready for input status

l

Suppress screen elements that are not needed (fields,

subscreens, and screens)

l

Different scope:

l

System:

Global fixed values

l

Transaction:

Transaction variants

l

Standard variants or individual variants

l

WYSIWYG maintenance with special recording function

[image: image4.wmf]ã

SAP AG 2002

Transaction

variant

Transaction Variants:

Example

Program

Arrival city

Departure city

Departure time

Program

Date of flight

Flight

Airline

Occ

.

seats

Free seats

Price

100

100

200

200

Program

Date of flight

Flight

Airline

Occ

.

seats

Free seats

Price

l

Predefine fields with values

l

Suppress fields

l

Hide screens

Info

Book

Button2

Button1

Info

Program

Book

New York

Arrival city

Departure time

Button1

100

100

200

200

· In this example, you see two screens of an SAP transaction that should be redesigned using a transaction variant.

· Screen 100 is changed as follows: fields are hidden, field attributes are changed, and buttons are hidden.

· Screen 200 shows the following changes: buttons moved and screen inserted (with GuiXT). The use of GuiXT will be discussed in more detail later.

[image: image5.wmf]ã

SAP AG 2002

Screen variant

ztest_0200

Screen variant

ztest_0100

Screen variant

ztest_0100

Transaction Variants:

Principle

Screen variant

ztest_0300

Screen variant

ztest_0100

Screen variant

ztest_0300

Transaction variant

Transaction variant

· A transaction variant is a reference to a set of screen variants.

· You can create any number of screen variants for a screen. The transaction variant consists of these screen variants.

[image: image6.wmf]ã

SAP AG 2002

Transaction Variants:

Options:

Standard variant

Standard variant

Transaction

Transaction

variant 1

variant 1

Transaction

Transaction

variant

variant

2

2

Transaction

Transaction

variant

variant

3

3

SAP

SAP

transaction

transaction

l

A standard variant

or

l

Any number of individual

variants

l

Standard variant overrides

SAP System transaction

l

Otherwise:

variant

transactions

· You can create different kinds of transaction variants for an SAP System transaction:

· A standard variant

· Any number of normal transaction variants

· The standard variant is executed at runtime instead of the SAP Systemdelivered transaction. No new transaction code is required.

· A normal transaction variant will be called with its own transaction code of type variant transaction.

[image: image7.wmf]ã

SAP AG 2002

Creating Transaction Variants

Transaction variants

Transaction

name

Transaction

name

Variant

Variant name

Variant name

Transaction

l

Tools

à

AcceleratedSAP

à

Personalization

à

Transaction variants

Create

Create

· To create transaction variants, choose AcceleratedSAP (Personalization (Transaction variant. This takes you to the transaction for maintaining transaction variants.

· Enter the name of the transaction for which you want to create a variant. The name of the variant must be unique in the system and be in the customer namespace.

· With the menu option Goto, choose whether you want to create a client-specific or a cross-client transaction variant.

· To create the variant, choose the appropriate button in the application toolbar.

[image: image8.wmf]ã

SAP AG 2002

Transaction Variants:

Evaluating Fields

Program

Departure city

Departure time

100

100

Departure city

Arrival city

Departure time

Button1

Button2

Frankfurt

New York

Finish and save

GuiXT

Menu functions

Button2

Arrival city

Button1

· Select Screen entries to start the transaction in CALL mode.

· Triggering a dialog also triggers Process After Input (PAI) of the current screen. The system sends another screen in which you can evaluate the fields of the screen.

· Online documentation provides further information about transaction variants.

· The screen that was evaluated is stored as a screen variant when you continue.

[image: image9.wmf]ã

SAP AG 2002

Screen Variants

Departure city

Arrival city

Departure time

Button1

Button2

Frankfurt

New York

Screen variant

name

Screen variant

name

Description

Description

Set field

attributes

Set field

attributes

Finish and save

GuiXT

Menu functions

Deactivate menu

functions

Deactivate menu

functions

· A screen variant is an independent Repository object, which has a unique name in the system. The name is constructed as follows:

· Variant name

· Client (only for client-specific transaction variants)

· Screen number

· Specify whether or not field contents should be copied to the screen variant. You can set various attributes for the individual fields:

· You can undo or hide the input status of a field

· You can find a detailed list of options in the online documentation about transaction variants

[image: image10.wmf]ã

SAP AG 2002

GuiXT

Departure time

Button1

Button2

l

Script editor

l

Script is stored as

text file

l

Scripts can be

imported

Screen variant

maintenance screen

Screen variant

maintenance screen

Screen files

Finish and save

GuiXT

Menu functions

· The GuiXT tool allows you to design the individual screens in a more flexible manner. GuiXT uses a script language to:

· Position objects on the screen

· Set attributes

· Include new objects

· If you select GuiX, an editor window appears where you can enter the script. You can also choose GuiXT files stored on your local machine.

· You can also import scripts created on the local machine and export them there.

[image: image11.wmf]ã

SAP AG 2002

GuiXT

:

Script Language

// Version:

19990921151118

IMAGE (1,1) "C:

\

sap.jpg"

BOX (10,20) (16,44) "Frame"

POS

[Element] [Element]+(10,0)

POS

[Area] [Area]+(10,0)

Pushbutton (10,50) "Text" "SCMP"

Insert screen

Insert screen

Comment

Comment

Insert frame

Insert frame

Move

element

Move

element

Pushbutton

with text and

function code

Pushbutton

with text and

function code

· You can change the layout of a screen with the script language used by GuiXT. You can:

· Move objects

· Insert screens

· Insert pushbuttons

· Insert value helps

· Change the input attributes of fields

· Delete screen elements

· You are provided with complete documentation of GuiXT with the installation. You can find more information on the homepage of the GuiXT vendor, http://www.synactive.com.

[image: image12.wmf]ã

SAP AG 2002

Starting Transaction Variants

Options for starting transaction variants

l

Test environment

l

Transaction code

l

From user menu

· You have the following options for starting a transaction variant:

· Test environment

· Transaction code of type variant transaction
· User menu

· You can test the process flow of the transaction in the test environment of transaction variant maintenance. This is intended primarily for developers who are creating transaction variants.

· To hang a variant transaction in a user menu or role, you must create a transaction code of type variant transaction.

[image: image13.wmf]ã

SAP AG 2002

Creating Variant Transactions

Transaction Maintenance

Create

Change

Display

Create

Create

Transaction code__

Transaction code

name

Transaction code

name

Create transaction

Create transaction

Transaction code

Transaction attributes

Dialog transaction

Report transaction

OO Transaction

Variant transaction

Parameter transaction

· To start a transaction variant from a menu, you must create a transaction code of type variant transaction. You can navigate there directly from the maintenance screen for the transaction variants. Alternatively, you can start the corresponding transaction from the ABAP Workbench.

[image: image14.wmf]ã

SAP AG 2002

Inserting Variant Transactions into Menus

Role menu

Office

Logistics

Information Systems

Tools

ABAP Workbench

Administration

Web Development

...

l

Role

l

Area menu

Transaction

· You can insert the transaction in a menu by maintaining:

· A role

· An area menu.

· The user can immediately see the changes made in this way.

[image: image15.wmf]ã

SAP

AG 2002

l

Create transaction variants that you can assign to

users using the above methods

You are now able to:

Personalization:

Unit Summary

[image: image16.wmf]ã

SAP

AG 2002

l

Explain the principles for using controls when

developing user dialogs.

l

Describe the basic conditions for using controls.

l

Identify sources for obtaining more information.

At the conclusion of this unit, you will be able to:

Control Framework: Unit Objectives

[image: image17.wmf]ã

SAP AG 1999

Object Orientation

Function

Function

Function

Function

Function

Function

Function

Function

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Method

Method

Method

Functions and data

Data model as abstraction

of the real world

Objects of the real world

Software objects

Object model as abstraction

of the real world

Attributes

Attributes

Abstraction

Abstraction

Methods

Methods

· In the past, information systems were primarily defined by their functions. Data and functions were kept separately and were linked with one another using input-output relationships.

· Object-oriented programming is based on abstract or concrete items that represent the real world. The state and characteristics of the objects are mapped by their inner structure and attributes (data). The behavior of the objects is described with methods (functions).

· Objects form a capsule connecting the state with the corresponding behavior. Objects should permit a one-to-one representation of the model of a problem area and a proposed solution.

· EnjoySAP Controls are special pairs of objects. They consist of a GUI object that is implemented at the front end as an ActiveX control or Java Bean and a (proxy) object at the back end. The latter is an object in your application and is created and edited using ABAP objects. The ABAP Workbench supports you here with global classes.

[image: image18.wmf]ã

SAP

AG 2002

Objects

Public

access

Private

access

Private

components

Inter

-

face

Public

attributes

Public

methods

Public

events

Address

Cust.

Passenger

list

Flight

POST

Airline

Flight number

FLIGHT

FLIGHT

· An object basically has two layers - inside and outside:

· Public components: The object components that are visible from outside, such as attributes, methods, and events. The public components can be used directly by all users. The public components of an object make up the interface of this object.

· Private components: These components are visible only within the object. They can also be attributes, methods and events.

· The aim is to have an object itself ensure that it is consistent. For this reason, the data is normally internal, that is, it has private attributes. The internal (private) attributes of an object can be manipulated only with methods of this object (encapsulation). In general, only methods that manipulate the data and ensure that the object is consistent are offered as public components.

· An object also has a unique identification to distinguish it from other objects with the same attributes and methods.

[image: image19.wmf]ã

SAP

AG 2002

Classes, References, and Objects

CLASS <cl_name> DEFINITION.

PUBLIC SECTION.

... .

PROTECTED SECTION.

... .

PRIVATE SECTION.

... .

ENDCLASS.

CLASS <name> IMPLEMENTATION.

... .

ENDCLASS

.

DATA <reference> TYPE REF TO <cl_name>.

CREATE OBJECT <reference> EXPORTING ...

.

· Classes describe the attributes and methods of a set of objects. There are two parts to this description: the attributes and methods are declared and then the methods are implemented.

· Each object belongs to a class. To create an object of a class, you must first declare an object reference variable (... TYPE REF TO <cl_name>). You can then create (instantiate) an object of this class using the ABAP object keyword CREATE OBJECT <reference>.

· An ABAP program can work with any number of runtime instances of the same class. The individual runtime instances represent objects that can be uniquely identified and are addressed with the corresponding object references.

· You can call a method of an object with CALL METHOD. You must specify the name of the method and the object with whose attributes the method is executed. The syntax for this is: CALL METHOD <reference>-><method>, where <reference> is a reference variable pointing to an object and <method> is a method of the class of this object. The operator -> is called the object component selector.

· You can also call methods dynamically using parentheses in the same way as in other ABAP statements (Dynamic Invoke). In contrast to dynamic subroutine and function module calls, you can also pass the parameters and handle exceptions dynamically (see documentation on CALL METHOD).

[image: image20.wmf]ã

SAP AG 2002

CFW as Seen by the Programmer: Classes

CL_GUI_CONTROL

CL_GUI_OBJECT

CL_GUI_CONTAINER

•

CL_GUI_CUSTOM_CONTAINER

•

CL_GUI_DOCKING_CONTAINER

•

CL_GUI_SPLITTER_CONTAINER

•

CL_GUI_EASY_SPLITTER_CONTAINER

•

CL_GUI_DIALOGBOX_CONTAINER

CL_GUI_PICTURE

CL_GUI_HTML_VIEWER

CL_GUI_TEXTEDIT

CL_GUI_ .

. .

CL_GUI_ALV_GRID

CL_GUI_TREE_CONTROL

· To use the Control Framework as described here, you need an R/3 System with at least Release 4.6A and a locally installed SAP GUI with Release 4.6A.

· The Control Framework provides you with a number of global classes, for example:

· CL_GUI_TEXTEDIT
Text editor

· CL_GUI_HTML_VIEWER
Web browser

· CL_GUI_PICTURE
Display of pictures

· CL_GUI_TREE_CONTROL
Hierarchy display in tree form

· CL_GUI_ALV_GRID
List display

· CL_GUI_CFW
Central services for communicating with the GUI controls

· CL_GUI_CONTAINER
Special controls used to hold additional controls

[image: image21.wmf]ã

SAP AG 2001

Control Framework: Implementation of Controls

Basic terminology

Basic terminology

Implementation of controls

Implementation of controls

Communication with controls

Communication with controls

Sources of information

Sources of information

[image: image22.wmf]ã

SAP

AG 2002

Principles of Control Processing

l

Generating the control and

integrating it in a screen

EnjoySAP Control:

Life cycle

l

Using method calls to pass information between the

application server and the presentation server

l

Event handling: the program's reaction to a change in status

of the control

l

Releasing memory used by the control

[image: image23.wmf]ã

SAP

AG 2002

Screen Element Custom Container: Use

area

Container

control

HTML Viewer control

100

· Each EnjoySAP control resides in a container control. The container control provides space for displaying other controls on the screen. Container controls are themselves EnjoySAP controls and can therefore, be nested.

· There are different kinds of container controls. This training course will discuss only the SAP Custom Container.

· You define a customer control area on the screen for the SAP Custom Container. The SAP Custom Container is stored here at run time and then reserves space for your application control.

[image: image24.wmf]ã

SAP

AG 2002

Creating a Screen Element Custom Container

Area

Screen element

:

Type

:

CUSTOM CONTROL

Name

: MY_CONTAINER

Resizing

Minimum size

vertical

:

'X'

10

horizontal

:

'X'

20

Screen Painter: Layout Editor

C

Element

toolbar

· You define the custom control area on your screen with the Layout Editor in the Screen Painter.

· You assign the Custom Container area a name and maintain the corresponding static attributes. You define the size and resize parameters for the area.

[image: image25.wmf]ã

SAP

AG 2002

Creating a Container Control Instance

* PBO of screen containing MY_CONTAINER

MODULE create_objects OUTPUT.

...

* create objects only one time

CHECK container IS INITIAL.

* create container object

CREATE OBJECT container

EXPORTING container_name = 'MY_CONTAINER'.

...

ENDMODULE.

* data declarations

DATA: my_container TYPE REF TO cl_gui_custom_container.

...

CREATE OBJECT container

CREATE OBJECT container

EXPORTING container_name = 'MY_CONTAINER'.

EXPORTING container_name = 'MY_CONTAINER'.

DATA: container TYPE REF TO cl_gui_custom_container.

DATA: container TYPE REF TO cl_gui_custom_container.

CREATE OBJECT container

CREATE OBJECT container

EXPORTING container_name = 'MY_CONTAINER'.

EXPORTING container_name = 'MY_CONTAINER'.

· In your ABAP program, you first define a reference variable referring to the global class cl_gui_custom_container.

· Next you instantiate an appropriate object for the PBO of your screen. You pass the name of the Custom Container area to the SAP Custom Container.

· Make sure that only one instance of the SAP Custom Container is created on your screen. The runtime system simply places further instances in the area and the previous control can no longer be used. All the methods applied are thus lost. In this case, only the corresponding ABAP object on the back end is removed by the Garbage Collector.

[image: image26.wmf]ã

SAP AG 2002

Example HTML Viewer I

...

DATA: container TYPE REF TO cl_gui_custom_container,

html_viewer TYPE REF TO cl_gui_html_viewer,

url(255) value ‘http://www.sap.com' .

START

-

OF

-

SELECTION.

CALL SCREEN '0100'.

PROCESS BEFORE OUTPUT.

MODULE create_objects.

MODULE set_url.

PROCESS AFTER INPUT.

MODULE exit AT EXIT

-

COMMAND.

· The browser installed on the front end is used for an HTML Viewer.

· In the ABAP program, you declare a reference variable for global class cl_gui_html_viewer. In a PBO module, you create an appropriate instance and declare the container control (in which the SAP HTML Viewer resides) as a parameter.

· You can define a Uniform Resource Locator (URL) by calling a method in a module in the PBO event. The corresponding resource is then displayed on the screen.

· Make sure that the objects at the front end and back end release the corresponding storage area before leaving the program. Otherwise unwanted processes might remain active at the front end.

· You can use the following module, for example:

MODULE exit INPUT.

 CALL METHOD html_viewer->free.
" destroy the GUI object

 CALL METHOD container->free.

 FREE html_viewer.
" destroy the ABAP object

 FREE container.

 LEAVE PROGRAM.

ENDMODULE.
" EXIT INPUT

[image: image27.wmf]ã

SAP

AG 2002

Example HTML Viewer II

MODULE create_objects OUTPUT.

CHECK container IS INITIAL.

* create the container

CREATE OBJECT container

EXPORTING container_name = 'MY_CONTAINER'.

CHECK html_viewer IS INITIAL.

* create the control

CREATE OBJECT html_viewer

EXPORTING parent = container.

... .

ENDMODULE.

MODULE set_url OUTPUT.

* call method for setting url

CALL METHOD html_viewer

-

>show_url

EXPORTING url = url.

ENDMODULE.

· You need to generate only a single instance of the HTML Viewer at run time. Previous instances will be hidden and the corresponding methods will be lost.

· You can insert method calls into your program code using the corresponding statement template or simply by using Drag&Drop.

[image: image28.wmf]ã

SAP AG 1999

Control Framework: Communication with Controls

Basic terminology

Basic terminology

Implementation of controls

Implementation of controls

Communication with controls

Communication with controls

Sources of Information

Sources of Information

[image: image29.wmf]ã

SAP AG 1999

Method Calls

CFW

Method calls

GUI object

ABAP object

CALL METHOD <ref>

-

><meth>

EXPORTING ...

IMPORTING ...

.

· If you call a method of an EnjoySAP control in your ABAP program, the corresponding ABAP object passes the call to the Control Framework.

· It in turn calls a method of the corresponding GUI object at the front end.

· The data is transported between the back end and the front end.

[image: image30.wmf]ã

SAP AG 1999

SAP HTML Viewer: Features

Container

control

HTML

Viewer

Constructor

SHOW_URL

SHOW_URL_IN_BROWSER

GET_CURRENT_URL

Back

Forward

Copy

. . .

Class: cl_gui_html_viewer

Method name

TRACK_CONTEXT_MENU

Key

:

LOAD_HTML_DOCUMENT

LOAD_MIME_OBJECT

LOAD_DATA

SHOW_DATA

SET_UI_FLAG

STOP

DO_REFRESH

GO_BACK

GO_FORWARD

GO_HOME

File format:

•

<...>.html

•

<...>.gif

•

<...>.jpg

•

<...>.bmp

•

<...>.doc

•

<...>.xls

•

...

· The SAP HTML Viewer has the following methods:

· Service functions:

· Initialize: constructor
· Configure: set_ui_flag
· Info: get_current_url
· Context menu: track_context_menu
· Navigation: stop, do_refresh, go_back, go_forward, go_home
· Data sources:

· External: show_url, show_url_in_browser
· SAP Web Repository: load_html_document, load_mime_object
· SAP Data Provider: load_data, show_data

· You can find further information in the online documentation about global class cl_gui_html_viewer.

[image: image31.wmf]ã

SAP

AG 2002

Events

CFW

GUI object

ABAP object

· An object can declare that its state has changed by triggering an event.

· Other objects can contain handling methods that are executed when the event occurs.

· In contrast to normal method calls in which the calling program has control and knows the method called, the program triggering an event does not know what will handle this event. This is true for both the time when the event is defined and the time when the event occurs at run time.

· A class can thus define static events and an object can trigger events at run time without having to know whether and how they are used.

· If a GUI object of an EnjoySAP control triggers an event at the front end, the Control Framework makes sure that the corresponding ABAP object triggers an event that the instances of other ABAP objects can react to with their handling methods at the back end.

[image: image32.wmf]ã

SAP

AG 2002

Creating a Model Solution Using the

EnjoySAP

Controls

· You could have created the flight maintenance transaction using a new programming template in EnjoySAP Controls.

· An SAP Tree Control is used to display the selection of flights. The booking data is displayed in a list using an ALV Grid Control.

[image: image33.wmf]ã

SAP AG 2001

Control Framework: Sources of Information

Basic terminology

Basic terminology

Implementation of controls

Implementation of controls

Communication with controls

Communication with controls

Sources of information

Sources of information

[image: image34.wmf]ã

SAP

AG 2002

Sources of Information

Online documentation

Object Navigator

Environment Control examples

BC412

Dialog

Programming

Using

EnjoySAP Controls

Workbench Edition:

Controls Technology

· Further information on developing user dialogs using EnjoySAP Controls can be found in the Object Navigator under Environment (Controls examples in the online documentation and in the SAPNet Help Portal, http://help.sap.com/.

· You can find a detailed description of how to implement and use the various EnjoySAP Controls in the book ABAP Workbench Edition: Controls Technology 4.6. The book is available from the SAPShop (order number 50032529).

[image: image35.wmf]ã

SAP

AG 2002

You are now able to:

Control Framework: Unit Summary

l

Explain the principles for using controls when

developing user dialogs.

l

Describe the basic conditions for using controls.

l

Identify sources for obtaining more information.

[image: image36.wmf]ã

SAP

AG 2002

Requirements of F4 Help

Finding

values

User

dialog

Context sensitivity

Values replaced

· Various things are required of input help for a screen field (the search field) as described in the following text.

· The input help must take into account information that the system already knows (the context). This includes both information that the user has entered on the current screen, and information from previous dialog steps. The input help normally uses the context to restrict the set of possible values.

· The input help must find out the values that it then presents to the user for selection. It must also determine the data that will be displayed as additional information in the list of possible values. In determining the possible values, it must take into account restrictions that arise from the context, as well as those entered by the user as specific search conditions.

· The input help must conduct a user dialog. This involves (at least) displaying the possible values with additional information, and allowing the user to choose a value from it. In many cases, the input help will also contain an input screen on which the user can specify conditions to restrict the number of possible entries displayed.

· When the user selects a value, the input help must place it in the search field. In many cases, there are extra fields on the input screen (often only output fields), containing extra information about the search field. The input help should also update the contents of these fields.

[image: image37.wmf]ã

SAP

AG 2002

ABAP Dictionary Object: Search Help

Search help

Selection

method

Dialog behavior

Interface

· The ABAP Dictionary object search help is a description of an input help. Its definition contains the information that the system requires to meet the user's needs.

· The interface of the search help controls the data that is passed between the input screen and the F4 help. The interface determines the context data that is required and the data that can be placed back on the input screen when the user chooses a value.

· The internal behavior of the search help describes the actual F4 process. This contains the selection method, which retrieves the values for display, and the dialog behavior, which describes the interaction with the user.

· Similarly to function modules, search helps have an interface, which defines their capacity to exchange data with other software components, and an internal behavior (which, in the case of a function module, is its source code).

· It is only worth defining a search help if there is a mechanism that allows you to address it from a screen. This mechanism is called a search help connection.

· Like the function module editor, the search help editor also allows you to test your objects. This allows you to check how a search help behaves before you assign it to a screen field.

[image: image38.wmf]ã

SAP

AG 2002

Using Search Helps

Search field

Field 1

Input screen

Field 3

Table/structure

Field 1

Field 3

Search field

...

Definitions in

Screen Painter

Connection

in Dictionary

Internal behavior

Interface

F4

Search help

· A search help describes the process of an input help. In order for it to work, you need a mechanism that assigns the search help to the field. This is called the search help connection.

· Connecting a search help to a field affects its behavior. It is, regarded as part of the field definition.

· The semantic and technical attributes of a screen field (type, length, and F1 help) are normally not directly defined directly when you define the screen. Normally, you use a reference in the Screen Painter to an existing field in the ABAP Dictionary. The screen field then inherits the attributes of the ABAP Dictionary field.
The same principle applies when you define input help for a screen field. The link between the search help and the search field is established using the ABAP Dictionary field, not the screen field.

· When you assign a search help, its interface parameters are assigned to the screen fields that are filled by the search help or that pass information to it from the screen. The search field must be assigned to an EXPORT parameter of the search help. You should also make the search field an IMPORT parameter so that the search help can take into account a search pattern already entered in the field by the user.

· A field can have input help even if it does not have a search help; there are other mechanisms for F4 help (for example, fixed values for a domain).

[image: image39.wmf]ã

SAP

AG 2002

Search Help Assignment in ABAP Dictionary

Table/structure

MANDT

Field 1

Field 3

Search field

...

Search help

Check table

MANDT

Key1

Key2

Data

Internal behavior

Interface

Data element

· You can link a search help to a field in the ABAP Dictionary in three ways: by assigning it directly to a field, by assigning it to a check table, or by assigning it to a data element.

· It can be assigned directly to a field of a structure or table. You define this link in very much the same way as you would define a foreign key. You should define the assignment here (between the interface parameters of the search help and the structure field). The system generates a proposal.

· If the field has a check table, its contents are automatically proposed as possible values in the input help. The key fields of the check table are displayed. If the check table has a text table, the first non-key character field is also displayed. If the default display is insufficient for your requirements, you can attach a search help to the check table. This search help is then used for all fields that have that check table. When you link the search help, you must define the assignment between the search help´s interface and the key of the check table.

· The semantics of a field and its possible values are defined by its data element. You can therefore also link a search help to a data element. The search help is then used by all fields that are based on that data element. When you link the search help, you must specify a single EXPORT parameter, which will be used to transfer the data.

· Attaching a search help to a check table (or data element) increases its reusability, however, it does restrict your options for passing extra values to the search help interface.

[image: image40.wmf]ã

SAP

AG 2002

Input Help Mechanisms

Does not exist

Exists

PROCESS ON

VALUE

-

REQUEST

Input help on screen

Checks in

flow logic

FIELD

… SELECT

FIELD

… VALUES

Search help for

screen field

Field search help

Search help for

data element

Search help

for

check table

Fixed values

Clock or

calendar help

Check table with

text table

Key values

of check table

Check table help

· To allow as many fields as possible to carry useful input help, the R/3 System contains a wide range of mechanisms with which you can define input help. If it is possible to use more than one of these mechanisms for a particular field, the one highest in the hierarchy is used.

· In addition to defining the input help for a field in the ABAP Dictionary (as you have already seen), you can also define it in the screen field. An advantage of this method is that you cannot reuse it automatically.

· The screen event POV (PROCESS ON VALUE-REQUEST) allows you to program input help for a field yourself. You can make this help appear in standard form by using the function modules F4IF_FIELD_VALUE_REQUEST or F4IF_INT_TABLE_VALUE_REQUEST.
However, you should first check to see you cannot program your own input help better using a search help exit (see appendix).

· You can also attach a search help to a screen field in the Screen Painter. However, the functional scope of this technique is more restricted than attaching a search help in the ABAP Dictionary.

· You should no longer use input checks programmed directly in the flow logic (and from which input help can be derived).

· The context menu (available with right-click) for the hit list contains a Technical info function. This tells you which mechanism is being used in a particular case.

[image: image41.wmf]ã

SAP

AG 2002

Defining

Tabstrip

Controls on the Selection Screen

SELECTION

-

SCREEN BEGIN OF SCREEN 101 AS SUBSCREEN.

...

SELECTION

-

SCREEN END OF SCREEN 101.

SELECTION

-

SCREEN BEGIN OF SCREEN 102 AS SUBSCREEN.

...

SELECTION

-

SCREEN END OF SCREEN 102.

SELECTION

-

SCREEN BEGIN OF TABBED BLOCK

blockname

FOR n LINES.

SELECTION

-

SCREEN TAB (length) tabname1 USER

-

COMMAND ucomm1 DEFAULT SCREEN 101.

SELECTION

-

SCREEN TAB (length) tabname2 USER

-

COMMAND ucomm2 DEFAULT SCREEN 102.

SELECTION

-

SCREEN END OF BLOCK

blockname

.

INITIALIZATION.

tabname1 = TEXT

-

001. "TEXT

-

001 EN: Connection

tabname2 = TEXT

-

002. "TEXT

-

002 EN: Flight

ABAP

ABAP

Connection

.

Flight

Airline

Connection

SELECTION

SELECTION

-

-

SCREEN BEGIN OF TABBED BLOCK

SCREEN BEGIN OF TABBED BLOCK

blockname

blockname

FOR n LINES.

FOR n LINES.

SELECTION

SELECTION

-

-

SCREEN TAB (length) tabname1 USER

SCREEN TAB (length) tabname1 USER

-

-

COMMAND ucomm1 DEFAULT SCREEN 101.

COMMAND ucomm1 DEFAULT SCREEN 101.

SELECTION

SELECTION

-

-

SCREEN TAB (length) tabname2 USER

SCREEN TAB (length) tabname2 USER

-

-

COMMAND ucomm2 DEFAULT SCREEN 102.

COMMAND ucomm2 DEFAULT SCREEN 102.

SELECTION

SELECTION

-

-

SCREEN END OF BLOCK

SCREEN END OF BLOCK

blockname

blockname

.

.

INITIALIZATION.

INITIALIZATION.

tabname1 = TEXT

tabname1 = TEXT

-

-

001. "TEXT

001. "TEXT

-

-

001 EN: Connection

001 EN: Connection

tabname2 = TEXT

tabname2 = TEXT

-

-

002. "TEXT

002. "TEXT

-

-

002 EN: Flight

002 EN: Flight

· You define a subscreen for a tabstrip control on a selection screen as follows:
SELECTION-SCREEN BEGIN OF TABBED BLOCK <blockname> FOR <n> LINES.
SELECTION-SCREEN END OF BLOCK <blockname>.
The size of the subscreen area in lines is defined by <n>.

· The system automatically generates a CONTROLS statement: CONTROLS: TABSTRIP_BLOCKNAME TYPE TABSTRIP. Do not write your own CONTROLS statement. If you try to do so, a syntax error results.

· You define the individual tab pages as follows:
SELECTION-SCREEN TAB (length) <name> USER-COMMAND <ucomm> [DEFAULT [PROGRAM <prog>/SCREEN <dynnr>]].
Optional additions:
[DEFAULT [PROGRAM <prog>/SCREEN <dynnr>]].
If you use the DEFAULT addition, you must also use the SCREEN addition. The PROGRAM addition is optional. You need it only if the screen comes from another program.

· You can delay specifying the link between the tab title and the selection screen until run time. You can also change an existing assignment at run time. To do this, fill the blockname structure. This is created automatically for every tabstrip block. The structure has the same name as the tabstrip block and contains the PROG, DYNNR, and ACTIVETAB fields. For further information, refer to the online documentation SUB-2.

[image: image42.wmf]ã

SAP

AG 2002

PROCESS BEFORE OUTPUT.

LOOP...

.

MODULE

get_looplines

get_looplines

.

ENDLOOP.

Screen

Screen

Painter

Painter

Table Controls: Scrolling Page by Page (Example)

get_looplines

get_looplines

DATA: looplines LIKE sy

-

loopc.

...

MODULE

get_loopline

get_loopline

OUTPUT.

looplines = sy

-

loopc.

ENDMODULE.

MODULE

user_command_0200

INPUT.

CASE ok_code.

...

WHEN '

P++

' OR '

P+

' OR '

P

-

' OR '

P

--

'.

CALL FUNCTION 'SCROLLING_IN_TABLE'

EXPORTING

entry_act = my_control

-

top_line

entry_to = my_control

-

lines

loops = looplines

ok_code = ok_code

IMPORTING

entry_new = my_control

-

top_line.

...

ENDCASE.

ENDMODULE.

ABAP

ABAP

get_looplines

get_looplines

'SCROLLING_IN_TABLE'

'SCROLLING_IN_TABLE'

2

3

4

5

itab_spfli

1

7

8

...

6

3

4

2

1

1

7

8

6

5

5

1

1

my_control

-

top_line

· You can scroll a page at a time in a table control using the table control attribute,
<ctrl>-top_line.

· In the PAI processing block, you need to know the current number of lines in the corresponding table control.

· The sy-loopc system field contains the number of table control lines in the PBO processing block. However, in the PAI, it contains the number of filled lines.

· SY-LOOPC is filled only between LOOP and ENDLOOP, since it always refers to the current loop.

· Use the SCROLLING_IN_TABLE function module for scrolling.

[image: image43.png]

Documentation References
	Ref.
	Path in Documentation

	GUI-1
	In Menu Painter: Goto (Interface objects;
Function key settings (<name> (Pushbutton settings;
Interface(Subobject(Create

	GUI-2
	SAP Library(Basis(ABAP Workbench(BC ABAP Workbench Tools(ABAP Workbench: Tools(Menu Painter(Functions

	GUI-3
	In Menu Painter: Utilities(Help texts(Internal key number

	GUI-4
	In Menu Painter: Utilities(Help texts(Standards/proposals

	ILS-1
	In ABAP Editor: Utilities(Help on...; ABAP term: READ

	ILS-2
	In ABAP Editor: Utilities(Help on...; ABAP term: MODIFY

	ILS-3
	In ABAP Editor: Utilities(Help on...; ABAP term: GET CURSOR

	DIA-1
	SAP Library (Getting Started with the SAP System (Layout Menu

	DIA-2
	SAP Library(Basis(ABAP Workbench(BC ABAP Workbench Tools(ABAP Workbench: Tools(Screen Painter(Defining the Element Attributes

	DIA-3
	SAP Library(Basis(ABAP Workbench(BC ABAP Workbench Tools(ABAP Workbench: Tools(Screen Painter(Creating Screens

	OUT-1
	In Screen Painter: Goto(Translation

	OUT-2
	SAP Library (Basis (ABAP Workbench (BC - SAP Style Guide (R/3 Icons and symbols(Icons (Icons as status displays.

	INP-1
	SAP Library (Basis (ABAP Workbench (BC – SAP Style Guide (Interface elements (Input/output fields

	INP-2
	SAP Library(Basis(ABAP Workbench(BC ABAP Workbench Tools(ABAP Workbench: Tools(Screen Painter(Defining the Element Attributes(Choosing Field Formats

	INP-3
	SAP Library (Basis (ABAP Workbench (BC - SAP Style Guide (Functions – General Guidelines and Overview (Navigation Functions - Overview(Overview of Navigation Options

	INP-4
	SAP Library (Basis (ABAP Workbench (BC - SAP Style Guide (Functions – General guidelines (Navigation Functions – Overview (Comparison of Exit, Back, and Cancel.

	SUB-1
	SAP Library (Basis (BC – ABAP Programming and Runtime Environment (BC - ABAP Programming(ABAP User Dialogs(Screens(Complex Screen Elements(Tabstrip Controls

	SUB-2
	SAP Library (Basis (BC – ABAP Programming and Runtime Environment (BC - ABAP Programming(ABAP User Dialogs(Selection Screens(Subscreens and Tabstrip Controls on Selection Screens

	TAB-1
	SAP Library (Basis (BC – ABAP Programming and Runtime Environment (BC - ABAP Programming(ABAP User Dialogs(Screens(Complex Screen Elements(Table Controls

© SAP AG
TAW12
11-1

