
0 [image: image1.wmf]ã

SAP

AG 2002

l

Abstract and final classes

l

Visibility of constructors

l

Friends

l

Object Services

Contents:

Special Techniques

[image: image2.wmf]ã

SAP

AG 2002

l

Create and describe abstract and final classes

l

Explain the visibility criteria of constructors

l

Describe the friend concept

l

Describe the persistence service of Object

Services

At the conclusion of this unit, you will be able to:

Special Techniques: Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Abstract and final classes

Abstract and final classes

Visibility of constructors

Visibility of constructors

The friend concept

The friend concept

Persistent objects

Persistent objects

Special Techniques (1)

[image: image4.wmf]ã

SAP

AG 2002

CLASS

lcl

_vehicle DEFINITION

ABSTRACT

.

PUBLIC SECTION.

METHODS estimate_fuel_consumption

ABSTRACT

IMPORTING ...

ENDCLASS.

l

Abstract classes themselves cannot be instantiated (although

their subclasses can)

n

References to abstract classes can refer to instances of subclas

ses

l

Abstract (instance) methods are defined in the class, but not

implemented

n

They must be redefined in subclasses

Class cannot

be instantiated

Method not

implemented in this

class

Abstract Classes

· It is not possible to instantiate objects of an abstract class However, this does not mean that references to such a class are not useful. On the contrary, they are very useful, since they can (and must) refer to instances in subclasses of the abstract class at runtime. The CREATE OBJECT statement is extended in this context. You can specify the class of the instance to be created explicitly:
CREATE OBJECT <RefToAbstractClass> TYPE <NonAbstractSubclassName>.
· Abstract classes are normally used as an incomplete blueprint for concrete (that is, non-abstract) subclasses, for example to define a uniform interface.

· Abstract instance methods are used to specify particular interfaces for subclasses, without having to immediately provide implementation for them. Abstract methods need to be redefined and thereby implemented in the subclass (here you also need to include the corresponding redefinition statement in the DEFINITION part of the subclass).

· Classes with at least one abstract method are themselves abstract.

· Static methods and constructors cannot be abstract (they cannot be redefined).

[image: image5.wmf]ã

SAP

AG 2002

CLASS

lcl

_truck DEFINITION

FINAL

INHERITING FROM

lcl

_vehicle.

...

ENDCLASS.

CLASS

lcl

_

bus

DEFINITION INHERITING FROM

lcl

_

vehicle

.

PUBLIC SECTION.

METHODS

estimate

_

number

_

of

_

free

_

seats

FINAL

.

ENDCLASS.

l

Final methods cannot be redefined in subclasses

l

Final classes cannot have subclasses

vehicle

truck

bus

...

...

...

Final Classes

· A final class cannot have subclasses, and can protect itself in this way against (uncontrolled) specialization.

· A final method in a class cannot be redefined in a subclass, and can protect itself in this way against (uncontrolled) redefinition.

· Some features:

· A final class implicitly only contains final methods. In this case, you cannot enter FINAL explicitly for these methods.

· Methods cannot be both final and abstract.

· Classes, on the other hand, that are both abstract and final can be useful: Only static components can be used.
[image: image6.wmf]ã

SAP

AG 2002

Abstract and final classes

Abstract and final classes

Visibility of constructors

Visibility of constructors

The friend concept

The friend concept

Persistent objects

Persistent objects

Special Techniques (2)

[image: image7.wmf]ã

SAP

AG 2002

l

The usability of classes can be restricted:

CLASS

cl

_class DEFINITION ...

n

CREATE PUBLIC

Every user (client) can create instances of a class

(default setting)

n

CREATE PROTECTED

Only the class itself and all its subclasses can create instance

s of this

class

n

CREATE PRIVATE

Only the class can create instances of itself

l

This implicitly controls the visibility of the

class

l

Possible use:

Singleton

concept

(1)

lcl

_singleton

Private

Public

r_

singl

get_

singleton

Client

Who Can

Instantiate

Classes?

· If you want to ensure that not every user (client) can instantiate a class, you can use the following additions to restrict the visibility area of the constructor and hence limit the use of the class. (The following additions must be preceded by CLASS ... DEFINITION.)

· The CREATE PUBLIC addition is implicitly available for every class definition, provided neither of the other two CREATE additions is used. It defines the default that every user can create instances of a known class.

· The optional additions CREATE PROTECTED and CREATE PRIVATE, on the other hand, have the effect that not every user can create instances of a class. In the case of CREATE PROTECTED, only subclasses of the class or the class itself and, in the case of CREATE PRIVATE, only the class itself can create instances of the class.

· Therefore, the additions CREATE PROTECTED and CREATE PRIVATE allow you to control instance creation and, for example, are a prerequisite for the instance management of persistent objects, for which the uniqueness of objects must be ensured. (Persistent objects will be discussed in more detail later.)

· If it is to be impossible to instantiate a class more than once (for example, because it serves as a data administrator or data container), you can use the singleton concept. The class is defined with the addition CREATE PRIVATE and FINAL and instantiated using its static constructor.
A public static component could then make the reference to the class available to an external user.

[image: image8.wmf]ã

SAP

AG 2002

Abstract and final classes

Abstract and final classes

Visibility of constructors

Visibility of constructors

The friend concept

The friend concept

Persistent objects

Persistent objects

Special Techniques (3)

[image: image9.wmf]ã

SAP

AG 2002

l

In rare cases, classes have to work together closely and make al

l

their components, including the protected and private ones,

available to each other

n

Efficient direct access to the data of a class providing

friendship

n

Methods that access the same data can therefore be spread over

several classes

n

Package creation support

flight_list

(5)

lcl

_flight_data

(3)

lcl

_flight_factory

create_flight

get_flight

delete_flight

Package

...

Friend

Friend

Provides friendship

Friends

· In rare cases, classes have to work together so closely that they need access to their protected and private components. To avoid making these components available to all users, there is the concept of friendship between classes.

· A class can provide friendship to other classes and interfaces (and hence all classes that implement the interface). To do this you use the FRIENDS additions to the CLASS statement, in which all classes and interfaces that are to be provided friendship are listed. Friends are allowed to access the protected and private components of the class providing the friendship and can always create instances of this class, regardless of the CREATE addition to the CLASS statement.

· In principle, providing friendship is one-sided: A class providing friendship is not automatically a friend of its friends. If a class providing friendship wants to access the non-public components of a friend, this friend has to explicitly provide friendship to it.

· Classes that inherit from friends and interfaces that contain a friend as a component interface also become friends. Therefore, extreme caution is advised when providing friendship. The higher up a friend is in the inheritance tree, the more subclasses can access all components of a class providing friendship. However, providing friendship, unlike the attribute of being a friend, is not inherited. A friend of a superclass is therefore not automatically a friend of its subclasses.

[image: image10.wmf]ã

SAP

AG 2002

Abstract and final classes

Abstract and final classes

Visibility of constructors

Visibility of constructors

The friend concept

The friend concept

Persistent objects

Persistent objects

Special Techniques (4)

[image: image11.wmf]ã

SAP

AG 2002

ABAP program

Persistence service

Database

Transient objects

Persistent data in

tables

Read/write objects

Persistence Service

· The persistence service helps the programmer to work object-oriented with data in relational databases.

· In principle, ABAP programs work with data and objects that exist(s) in the internal session at runtime. They are transient when the program is stopped. If this data is to be stored program-independently, that is persistently, it must be stored in the database. (You could also use files on operating system level.)

· In ABAP Objects, this is done using the OPEN SQL interface.
To be able to work with ABAP Objects persistently, the persistence service was introduced with SAP R/3 Basis Release 6.10. Objects and their attributes can be written to the database and re-imported.

[image: image12.wmf]ã

SAP

AG 2002

l

Objects of a running ABAP program are

transient

l

The persistence service allows you to work with

persistent

objects

l

Persistent classes are created

in the Class Builder

l

Persistence service tasks

n

Loading the objects from the database

n

Managing changes to the objects

n

Storing the objects in the database

Normal ABAP Class

Create Class CL_PERSISTENT_CLASS

Exception Class

Persistent Class

...

Class Type

Features of the Persistence Service

· To use the persistence service for objects, their classes must be created as so-called persistent classes in the Class Builder.

· The term persistent class indicates that the objects of the class and their state are managed by the persistence service. In ABAP programs, objects of these classes are, for example, not created using the normal statement CREATE OBJECT, but instead using a method of the persistence service that ensures the correct initialization.

· When creating a persistent class, the Class Builder automatically creates a corresponding class, the so called class actor or agent, the methods of which are used to manage the objects of the persistent class.

· As well as their unique identity, persistent classes can also contain so-called key attributes, which the persistence service uses to ensure the uniqueness of the persistent objects' contents.

[image: image13.wmf]ã

SAP

AG 2002

...

DATA: r_carrier TYPE REF TO cl_carrier,

r_agent TYPE REF TO ca_carrier,

carrname TYPE s_carrname.

r_agent = ca_carrier=>

agent

.

TRY.

r_carrier = r_agent

-

>get_persistent(i_carrid = 'LH').

carrname = r_carrier

-

>get_carrname().

WRITE: 'LH: ', carrname.

CATCH cx_os_object_not_found.

ENDTRY.

l

Within the persistence service, the class actor or

class agent

manages

the persistent objects

n

The agent provides a range of services (methods), which are used

to

manage the objects and the encapsulated data

n

Technically, the agent is a singleton, which is addressed using

the public

static attribute AGENT

The

agent

,

a singleton of the class

CA_CARRIER and

friend of the persistent

class CL_CARRIER

Class Agent

· For every persistent class cl_persistent, the Class Builder generates two further classes ca_persistent and cb_persistent. These classes make up the class-specific part of the persistence service.

· ca_persistent is the so-called class actor (or agent), which is used to manage the managed object of the class cl_persistent, and in which all actual database accesses take place. The class actor inherits the relevant methods from the abstract superclass cb_persistent. The programmer can extend the class actor and redefine the methods (especially the database accesses). The superclass cb_persistent cannot be changed. The class actor is a friend of the managed class. It has the attribute CREATE PRIVATE and exactly one instance of the class actor is created when it is first accessed.

· The static attribute AGENT is a reference variable with the type of the class ca_persistent. When the attribute is first accessed in an ABAP program, the static constructor of the class ca_persistent creates exactly one instance of this class, which points to the attribute AGENT. This object is part of the persistence service and its methods are used to manage the object of the persistent class. For each program there is only one object of the class ca_persistent, because you cannot create objects from outside using CREATE OBJECT.

· The class actor manages one or more objects of the relevant persistent class. These objects must have different keys.

[image: image14.wmf]ã

SAP

AG 2002

l

Create and describe abstract and final classes

l

Explain the visibility criteria of constructors

l

Describe the friend concept

l

Describe the persistence service of Object

Services

You are now able to:

Special Techniques: Unit Summary

Exercises - optional

	[image: image15.png]

	Unit: Special Techniques

Topic: Singleton Classes

	[image: image16.png]

	At the conclusion of these exercises, you will be able to:

· Create a singleton; requirement for next exercise

	[image: image17.jpg]

	Model solution:
CL_SINGLETON

SAPBC401_SPCS_MAIN_A

1
(Advanced)
Create the global class ZCL_##_SINGLETON in the Class Builder.
The following must be specified for the class:

1-1
You must be able to be instantiate the class only once. (Tip: Instantiation should take place automatically when the class is first accessed.)

1-2
Instantiation only takes place within the class.

1-3
The class has a static reference variable r_singleton that refers to the instantiated object.

1-4
The class has a static reference variable r_singleton that refers to the instantiated object.

2
In the main program ZBC401_##_MAIN_SPECIAL, instantiate the singleton class ZCL_##_SINGLETON by calling the get_singleton method.

2-1
Why must the get_singleton method in this example be static?

2-2
Verify your blueprint by calling get_singleton several times. (Debug.) When does instantiation take place and how often?

Exercises - optional

	[image: image18.png]

	Unit: Special Techniques

Topic: Concluding Project Exercise

	[image: image19.png]

	At the conclusion of these exercises, you will be able to:

· Create a “friends” relationship and access the data of a class providing the friendship (a singleton) from the befriended class

(Note that the friends concept is mainly used in bigger projects with more complex classes)

	[image: image20.jpg]

	Model solution:
CL_AGENCY

SAPBC401_SPCS_MAIN_B

3
(Advanced)
Use your singleton and the main program from the last exercise.

3-1
Add a static attribute connection_list (with type TY_CONNECTIONS, that is an itab) to the singleton class.

3-2
When instantiating the singleton, this internal table is to be automatically filled with the flight connections from the table SPFLI.

4
Create a global class ZCL_##_AGENCY, which is to be provided friendship by the singleton.

4-1
Define and implement a constructor for ZCL_##_AGENCY.
In the constructor, the private attribute of the class name is to be initialized.

4-2
This class is to have a public method get connection.

4-2-1
Import parameter:
im_carrid and im_connid (types: S_CARR_ID and S_CONN:ID)

4-2-2
Export parameter:
A structure with line type SPFLI
Name the export parameter ex_connection.

4-2-3
In the method, the internal table of the class providing the friendship is to be accessed in a single record access. (READ TABLE...)
If the requested record does not exist, it is sufficient in this example to display an appropriate message using the WRITE statement.

5
Go back to the singleton class.
Here, provide friendship to the class ZCL_##_AGENCY.

6
In your main program, instantiate the class ZCL_##_AGENCY.
The singleton should have been instantiated in the last exercise.
There, the internal table with the flight connections is already filled.

6-1-1
Execute the get_connection method of ZCL_##_AGENCY requesting a flight connection that exists in the SPFLI table.
(for example ‚LH‘ / ‚0400‘)

Solutions - optional
	[image: image21.png]

	Unit:
Special Techniques
Topic:
Singleton Classes

&---

*& Report SAPBC401_spcS_MAIN_A *
&---

*& Work with singleton:
*& The singleton class consists of a static pointer r_singleton
*& pointing to the class itself; the class is final and has
*& the attribute „create private“.
*& in the class-constructor the class is instantiated via
*& this reference. The static method get_singleton passes the
*& reference to the outside world so that the singleton can be used!
&---

REPORT sapbc401_spcs_main_a.
DATA: r_single type ref to cl_singleton.

START-OF-SELECTION.
*########################

r_single = cl_singleton=>get_singleton().
Solutions - optional
	[image: image22.png]

	Unit:
Special Techniques
Topic:
Concluding Project Exercise

&---

*& Report SAPBC401_spcS_MAIN_B *
&---

*& Practice with singleton & friends (show package concept)
*&

*& The class cl_agency is a friend of the singleton;
*& cl_agency works directly with the private data of the singleton
*& the method get_connection reads single records out of an
*& internal table of the singleton; so the singleton acts as a kind
*& of data-container. cl_agency uses this data in the singleton
*& directly. (performance aspects, package-concept...)

&---

REPORT sapbc401_spcs_main_b.
DATA: r_single type ref to cl_singleton,
 r_agency type ref to cl_agency,
 rec type spfli.
START-OF-SELECTION.
*########################

r_single = cl_singleton=>get_singleton().
create object r_agency exporting im_name = 'Agency'.
r_agency->get_connection(exporting im_carrid = 'LH'
 im_connid = '0400'
 importing ex_connection = rec).
write: / rec-carrid, rec-connid.

friend

get_�connection

(3) lcl_agency

(1) cl_singleton

connection_list

© SAP AG
TAW10
12-19

