
0 [image: image1.wmf]ã

SAP

AG 2002

l

Classes

l

Objects

l

Attributes

l

Methods

l

Visibility/encapsulation

l

Instantiation

l

Constructor

l

Garbage collector

Contents:

Principles of Object

-

Oriented Programming

[image: image2.wmf]ã

SAP

AG 2002

l

Create classes

l

Create objects

l

Call methods

l

Explain how the garbage collector works

At the conclusion of this unit, you will be able to:

Principles of Object

-

Oriented Programming:

Unit

Objectives

[image: image3.wmf]ã

SAP

AG 2002

Principles (1)

Classes, attributes, and methods

Classes, attributes, and methods

Objects, instances of classes

Objects, instances of classes

Accessing attributes and methods

Accessing attributes and methods

The constructor

The constructor

Additional principles

Additional principles

[image: image4.wmf]ã

SAP

AG 2002

Example of a Class

lcl

_vehicle

Private

components

Methods:

Implementation

Public

components

Private access

•

Encapsulation

•

Normally attributes

Public access

•

Interface

•

Normally methods, events

make

model

set_make

get_make

Represented in

course by

· In the graphic, the public component of the class is accessed using the green node or starting point displayed on the left. A user or client can use this node to access the public components and hence also indirectly access the private components. However, the private components of the class cannot be addressed directly . They are not visible to the outside user.

· Why are the private components of a class hidden?
This principle is called information hiding or encapsulation and is used to protect the user.
Let us assume that a class changes its private components, while its interface remains unchanged. Any user who simply needs to access the interface of the class can carry on working with the class as usual. The user does not notice the change.
However, if an class changes its public components, then any user who accesses these public components must take these changes into account.

[image: image5.wmf]ã

SAP

AG 2002

Defining Classes

CLASS

lcl

_vehicle DEFINITION.

ENDCLASS.

CLASS

lcl

_vehicle IMPLEMENTATION.

ENDCLASS.

lcl_vehicle

Private

components

Method

implementation

Public

components

ABAP code

· A class is a set of objects that have the same structure and the same behavior. A class is therefore like a blueprint, in accordance with which all objects in that class are created.

· The components of the class are defined in the definition part. The components are attributes, methods, events, constants, types, and implemented interfaces. Only methods are implemented in the implementation part.

· The CLASS statement cannot be nested, that is, you cannot define a class within a class.

[image: image6.wmf]ã

SAP

AG 2002

Attributes

l

Attributes can have any kind of

data type:

l

C, N, I, P, ..., STRING

l

Dictionary types

l

User

-

defined types

l

TYPE REF TO

defines a reference to an

object, in this case

“r_car

”

(5)

lcl

_car

Private

Public

make TYPE STRING,

...

r_motor

TYPE REF TO ...

(3)

lcl

_rental

r_car

· Attributes describe the data that can be stored in the objects of a class.

· Class attributes can be of any type:

· Data types: scalar (for example data element), structured, in tables

· ABAP elementary types (C, I, ...)

· Object references

· Interface references

· Examples of attributes for the class lcl_car are:

· make

(car make)

· modell

(type , model)

· ser_no

(serial number)

· color

(color)

· car_type
(estate, convertible, ...)

· max_seats
(number of seats)

· r_motor

(reference to class lcl_motor)
· ...
[image: image7.wmf]ã

SAP

AG 2002

Attributes, Types, and Constants: Syntax

CLASS <

classname

> DEFINITION.

...

TYPES: <normale

Typdefinition

>.

CONSTANTS:

constant

TYPE <

type

> VALUE <

value

>.

DATA: variable1 TYPE <

type

>,

variable2 TYPE <

ddic

_

type

>,

variable3 LIKE variable1,

variable4 TYPE <

type

> VALUE <

value

>,

variable5 TYPE <

type

> READ

-

ONLY,

variable6 TYPE REF TO <

classname

>,

variable7 TYPE REF TO <

interface

>.

CLASS

-

DATA: only_once TYPE

ENDCLASS.

· In classes, you can only use the TYPE addition to refer to data types.

· You can only use the LIKE reference for local data objects.

· The READ-ONLY addition means that a public attribute declared with DATA can be read from outside, but can only be changed by methods of the class.

· You can currently only use the READ-ONLY addition in the public visibility section (PUBLIC SECTION) of a class declaration or in an interface definition.

[image: image8.wmf]ã

SAP

AG 2002

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

...

PRIVATE

SECTION.

DATA: make TYPE string.

ENDCLASS.

CLASS

lcl

_vehicle DEFINITION.

PUBLIC

SECTION.

DATA: make TYPE string.

PRIVATE SECTION.

ENDCLASS.

Attributes and Visibility

l

Public attributes

n

Can be viewed and

changed by all users and

in all methods

n

Direct access

l

Private attributes

n

Can only be viewed and

changed from within the

class

n

No direct access

from outside the class

· You can protect attributes against access from outside by characterizing them as private attributes (defined in the PRIVATE SECTION).

· Attributes and their values that may be used directly by an external user are public attributes and are defined in the PUBLIC SECTION.

· In the above example for the class lcl_car, the attribute make is defined as a public attribute.

· Public attributes belong to the interface of the class, that is their implementation is publicized. If you want to hide the internal implementation from users, you must define internal and external views of attributes.

· As a general rule, you should define as few public attributes as possible.
[image: image9.wmf]ã

SAP

AG 2002

Accessing Private Attributes

(5)

lcl

_vehicle

Private

Public

r_vehicle

make

Client

set_make

get_make

...

· You can access an object's private attributes using public methods, which in turn output this attribute or change it.

· It is not possible to directly access private attributes from outside (for example, main program or other object). The only exception lies in the so-called "friend" concept, which will be dealt with later in the course.

[image: image10.wmf]ã

SAP

AG 2002

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

...

PRIVATE SECTION.

DATA: make TYPE string,

...

CLASS

-

DATA: n_o_vehicles TYPE i.

ENDCLASS.

Instance Attributes and Static Attributes (1)

l

Instance attributes

n

One per instance

n

Statement: DATA

l

Static attributes

n

Only one per class

n

Statement: CLASS

-

DATA

n

Also known as class

attributes

· There are two kinds of attributes:

· Static attributes

· Instance attributes

· Instance attributes are attributes that exist separately for each object.
Instance attributes are defined using the ABAP keyword DATA.

· Static attributes exist only once for each class and are visible for all (runtime) instances in that class. Static attributes usually contain information that applies to all instances, such as:

· Data that is the same in all instances

· Administrative information about the instances in that class (for example, counters, ...)

· Static attributes are defined using the CLASS-DATA keyword.

· You may come across the expression "class attributes" in documentation, however, the official term in ABAP Objects (as in C++, Java) is "static" attributes.

[image: image11.wmf]ã

SAP

AG 2002

Instance Attributes and Static Attributes (2)

Internal session

Internal session

Global data objects

(2)

lcl

_vehicle

(3)

lcl

_vehicle

...

n_o_vehicles

3

r_vehicle1

r_vehicle3

r_vehicle2

(1)

lcl

_vehicle

Static attributes

Static attributes

Static attributes

only exist once

Instances /

objects

...

· The graphic shows the static attribute n_o_vehicles.
It exists only once, regardless of how many instances there are of lcl_vehicle.

· Therefore, you can say that instances share their common attributes.

[image: image12.wmf]ã

SAP

AG 2002

Methods: Syntax

CLASS <

classname

> IMPLEMENTATION.

METHOD

<

method

_

name

>.

...

ENDMETHOD.

ENDCLASS.

CLASS <

classname

> DEFINITION.

...

METHODS:

<

method

_

name

>

[IMPORTING <im_

var

> TYPE <

type

>

EXPORTING <ex_

var

> TYPE <

type

>

CHANGING <

ch

_

var

> TYPE <

type

>

RETURNING VALUE(<

re

_

var

>) TYPE <

type

>

EXCEPTIONS <

exception

>

RAISING <

class

_

exception

>

].

ENDCLASS.

Methods can have

a signature

Methods contain the

source code, and hence

define the

behavior

of an

object

· Methods are internal procedures in classes that determine the behavior of an object. They can access all attributes in their class and can therefore change the state of an object.

· Methods have a parameter interface (called signature) that enables them to receive values when they are called and pass values back to the calling program.

· In ABAP Objects, methods can have IMPORTING, EXPORTING, CHANGING, and RETURNING parameters as well as exception parameters. All parameters can be passed by value or reference. (As of SAP R/3 Basis Release 6.10, you should no longer use the EXCEPTIONS parameter for exceptions but use the RAISING addition instead; this will be discussed in more detail later.)

· You can define a return code for methods using RETURNING. You can only do this for a single parameter, which additionally must be passed as a value. Also, you cannot then define EXPORTING and CHANGING parameters. You can define functional methods using the RETURNING parameter (this will be explained in more detail).

· All input parameters (IMPORTING, CHANGING parameters) can be defined as optional parameters in the declaration using the OPTIONAL or DEFAULT additions. These parameters then do not necessarily have to be passed when the object is called. If you use the OPTIONAL addition, the parameter remains initialized according to type, whereas the DEFAULT addition allows you to enter a start value.

[image: image13.wmf]ã

SAP

AG 2002

Accessing Private Methods

(5)

lcl

_vehicle

Private

Public

r_vehicle

init

_make

set_make

make

...

...

Client

· Methods also have to be assigned to a visibility area. This determines whether the methods can be called from outside or only from within the class.

· It is not possible to directly access private methods from outside. However, a private method can be called by a public method.

· Both method types can access the public and private attributes.

[image: image14.wmf]ã

SAP

AG 2002

Methods and Visibility

l

Public methods

n

Can be called from

anywhere

l

Private methods

n

Can only be called

within the class

CLASS

lcl

_vehicle DEFINITION.

PUBLIC

SECTION.

METHODS: set_make importing

im

_make TYPE string.

PRIVATE

SECTION.

METHODS:

init

_make.

DATA: make TYPE string.

ENDCLASS.

CLASS

lcl

_vehicle IMPLEMENTATION.

METHOD

init

_make.

make = 'no make'.

ENDMETHOD.

METHOD set_make.

IF

im

_make IS INITIAL.

* Calling

init

_make

...

ELSE.

make =

im

_make.

ENDIF.

ENDMETHOD.

ENDCLASS.

· In this example, init_make is a private method that is called by the public method set_make.

[image: image15.wmf]ã

SAP

AG 2002

Instance Methods and Static Methods

l

Instance methods

n

Can use both static and instance components in their

implementation part

n

Can be called using an instance

l

Static methods

n

Can only use static components in their implementation

part

n

Can be called using the class

Rules:

· Static methods are defined at class level. They are similar to instance methods, but with the restriction that they can only use static components (such as static attributes) in the implementation part. This means that static methods do not need instances and can be called from anywhere. They are defined using the CLASS-METHODS statement, and they are bound by the same syntax and parameter rules as instance methods.

· The term "class method" is common, but the official term in ABAP Objects (as in C++, Java) is "static method".

[image: image16.wmf]ã

SAP

AG 2002

Instance Methods and Static Methods: Example

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

METHODS: set_make IMPORTING

im

_make TYPE string.

CLASS

-

METHODS: get_count EXPORTING ex_count TYPE i.

PRIVATE SECTION.

DATA: make TYPE string.

CLASS

-

DATA: n_o_vehicles TYPE i.

ENDCLASS.

CLASS

lcl

_vehicle IMPLEMENTATION.

...

METHOD

get

_

count

.

ex_

count

= n_o_vehicles.

ENDMETHOD

ENDCLASS.

· In the static method get_count, you can only use the static attribute n_o_vehicles. All other attributes of the class are instance attributes and can only appear in instance methods.

[image: image17.wmf]ã

SAP

AG 2002

Summary and UML Notation

+

refers to public components

-

refers to private components

_

static components are underlined

CLASS

lcl

_

vehicle

DEFINITION.

PUBLIC SECTION.

METHODS:

set

_

make

IMPORTING im_

make

TYPE

string

.

CLASS

-

METHODS:

get

_

count

EXPORTING ex_

count

TYPE i.

PRIVATE SECTION.

DATA:

make

TYPE

string

. ...

CLASS

-

DATA: n_o_

vehicles

TYPE i.

METHODS:

init

_

make

.

ENDCLASS.

lcl

_vehicle

-

make

-

model

-

n_o_vehicles

...

+ set_make

-

init

_make

+

get_count

...

· A UML class diagram shows firstly the class name and, underneath that, the class attributes and methods.

· The visibility of components in a class is shown in UML using the characters "+" and "-":

 + indicates public components

 - indicates private components
Alternatively, public and private can be prefixed to the methods. The third option for providers of modeling tools in UML is to introduce their own symbols for visibility.
Representation of visibility characteristics is optional and is normally only used for models that are close to implementation.

· Static components are marked with an underscore.

· The method signature is represented as follows (optional):

· The input and output parameters and the parameters to be changed are shown in brackets.

· The return code is separated from the type name by a colon.

[image: image18.wmf]ã

SAP

AG 2002

Principles (2)

Classes, attributes, and methods

Classes, attributes, and methods

Objects, instances of classes

Objects, instances of classes

Accessing attributes and methods

Accessing attributes and methods

The constructor

The constructor

Additional principles

Additional principles

[image: image19.wmf]ã

SAP

AG 2002

Creating Objects

Rules:

l

Objects are created using the CREATE OBJECT

statement

l

Objects can only be created and addressed using

reference variables

lcl

_vehicle

-

make

-

model

-

ser

_no

-

n_o_vehicles

...

+ set_make

-

init

_make

+

get_count

...

(5)

lcl

_vehicle

Private

Public

make

modell

ser

_no

...

set_make

get_count

...

CREATE OBJECT r_vehicle

r_vehicle

· A class contains the generic description of an object. It describes all the characteristics that are common to all objects in that class. During the program runtime, the class is used to create specific objects (instances). This process is called instantiation.

· Example:
The specific object “Car xy with Ser-No. 0815" is created through instantiation from the class lcl_vehicle; it is created in the main memory at runtime.
The lcl_vehicle class itself does not exist as an independent runtime object in ABAP Objects.

· Implementation:
Objects are instantiated using the statement: CREATE OBJECT.
During instantiation, the runtime environment dynamically requests main memory space and assigns it to the object.
[image: image20.wmf]ã

SAP

AG 2002

Reference Variables

...

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

...

PRIVATE SECTION.

...

ENDCLASS.

CLASS

lcl

_vehicle IMPLEMENTATION.

...

ENDCLASS.

DATA: r_vehicle1

TYPE REF TO

lcl_vehicle,

r_vehicle2

TYPE REF TO

lcl_vehilce.

START

-

OF_SELECTION.

...

r_vehicle1

r_vehicle2

?

?

What do these

reference variables

point to?

· DATA: r_vehicle1 TYPE REF TO lcl_vehicle declares a reference variable that acts as a pointer to an object.

[image: image21.wmf]ã

SAP

AG 2002

Creating Objects: Syntax

DATA: r_vehicle1 TYPE REF TO

lcl

_vehicle,

r_vehicle2 TYPE REF TO

lcl

_vehicle.

CREATE OBJECT

r_vehicle1.

CREATE OBJECT

r_vehicle2.

r_vehicle1

r_vehicle2

(3)

lcl

_vehicle

Private

Public

(4)

lcl

_vehicle

Private

Public

· The CREATE OBJECT statement creates an object in the main memory. The attribute values of this object are either initial values or correspond to the VALUE entry.
· Reference variables can also be assigned to each other.
For the above example this would mean that r_vehicle1 and r_vehicle2 point to the same object.

[image: image22.wmf]ã

SAP

AG 2002

Garbage Collector

DATA: r_vehicle1 TYPE REF TO

lcl

_vehicle,

r_vehicle2 TYPE REF TO

lcl

_vehicle.

CREATE OBJECT r_vehicle1.

CREATE OBJECT r_vehicle2.

r_vehicle2 = r_vehicle1

r_vehicle2

(4)

lcl

_vehicle

Private

Public

r_vehicle1

(3)

lcl

_vehicle

Private

Public

· As soon as no more references point to an object, the Garbage Collector removes it from the memory.

· The Garbage Collector is a system routine that automatically deletes objects that can no longer be addressed from the main memory and releases the memory space they occupied.

[image: image23.wmf]ã

SAP

AG 2002

Garbage Collector: Procedure

l

All independent references in the global main memory are checked

.

The

references point to active objects, which are marked internally.

l

References of class or instance attributes to other objects are

followed.

These objects are also marked.

l

Objects that are not marked are deleted from the main memory.

(2)

lcl

_object

(4)

lcl

_object

(5)

lcl

_object

Deleted

· Independent references are references that have not been defined within a class.

[image: image24.wmf]ã

SAP

AG 2002

Buffering References

DATA: r_vehicle TYPE REF TO

lcl

_vehicle,

itab TYPE TABLE OF REF TO lcl_vehicle.

CREATE OBJECT r_vehicle.

APPEND r_vehicle TO itab.

CREATE OBJECT r_vehicle.

APPEND r_vehicle TO itab.

(2)

lcl

_object

(3)

lcl

_object

LOOP AT itab INTO r_vehicle.

* work with the current instance

ENDLOOP.

...

· If you want to keep several objects from the same class in your program, you can define an internal table, which, for example, only consist of one column containing the object references for this class.
· You can process the objects using a LOOP through the internal table.

[image: image25.wmf]ã

SAP

AG 2002

Aggregation Example

(5)

lcl

_vehicle

Private

Public

itab

_wheels

(17)

lcl

_wheel

(25)

lcl

_wheel

(29)

lcl

_wheel

(36)

lcl

_wheel

· If a class defines object references to a second class as attributes (in the above example: References to objects of the class lcl_wheel), only these object references will be stored in an object belonging to that class.

· The objects in the second class lcl_wheel have their own identity. They are encapsulated in the first class lcl_vehicle and can only be addressed from this class using reference variables.

[image: image26.wmf]ã

SAP

AG 2002

Principles (3)

Classes, attributes,

and

methods

Classes, attributes,

and

methods

Objects, instances of classes

Objects, instances of classes

Accessing attributes and methods

Accessing attributes and methods

The constructor

The constructor

Additional principles

Additional principles

[image: image27.wmf]ã

SAP

AG 2002

Calling Methods

(5)

lcl

_vehicle

Private

Public

r_vehicle

-

>

motor_on()

Reference

Component selector

Method

Client

motor_on

· Every object behaves in a certain way. This behavior is determined by its methods. There are three types of method:

· 1. Methods that trigger the behavior and do not return values (see example)

· 2. Methods that return a value

· 3. Methods that return or change several values

· An object that requires the services of another object sends a message to the object providing the services. This message names the operation to be executed. The implementation of this operation is known as a method.

· For the sake of simplicity, method will henceforth be used as a synonym for operation and message.

· The example shows the new syntax for method calls, in which the CALL-METHOD prefix is omitted.

[image: image28.wmf]ã

SAP

AG 2002

Calling Instance Methods: Syntax

Instance methods:

CALL METHOD

<instance>

-

>

<instance_method>

EXPORTING <

im

_

var

> = <variable>

IMPORTING <ex_

var

> = <variable>

CHANGING <

ch

_

var

> = <variable>

RECEIVING <re_

var

> = <variable>

EXCEPTIONS <exception> = <

nr

>

.

Shortened notation as of 4.6C:

<instance>

-

>

<instance_method>

(see online documentation)

([additions])

DATA: r_vehicle TYPE REF TO

lcl

_vehicle.

DATA: make_name TYPE STRING.

...

make_name = 'the make of the car'.

CALL METHOD r_vehicle

-

>

set

_make EXPORTING im_make = make_name.

* other variant, since 6.1 available, see documentation!

r_vehicle

-

>set_make

(make_name)

* now getting something back from method...

r_vehicle

-

>get_make

(IMPORTING ex_make = make_name).

· Instance methods are called using CALL METHOD <reference>-><instance_method>.

· Since SAP R/3 Basis Release 6.10, the shortened form is also supported; CALL METHOD is omitted. For further information, refer to the online documentation.

· Special case: When calling an instance method from within another instance method, you can omit the instance name. The method is automatically executed for the current object.

· For the method call set_make, you can omit the EXPORTING addition in the brackets. In this case, it is sufficient to set the actual parameter of the caller (in the example: make_name). However, if the method has two or more parameters in its interface, all actual and formal parameters within the brackets must have the EXPORTING addition.

· In the case of methods that return parameters to the caller, the IMPORTING addition must always be used and all actual and formal parameters must be listed.

· In method calls, multiple parameters are separated by spaces.

[image: image29.wmf]ã

SAP

AG 2002

Calling Static Methods: Syntax

Static methods:

CALL METHOD

<

classname

>

=>

<class_method>

([additions])

<

classname

>

=>

<class_method>

([additions])

DATA: r_vehicle TYPE REF TO

lcl

_vehicle.

DATA: make_name TYPE STRING,

count TYPE I.

...

* get_count has one interface

-

parameter re_count

CALL METHOD

l

cl_vehicle=>get_count

(

IMPORTING re_count = count).

* other variant, since 6.1 available, see documentation

lcl_vehicle=>get_count

(IMPORTING re_count = count).

· Static methods (also referred to as class methods) are called using CALL METHOD <classname>=><class_method>.

· Static methods are addressed with their class name, since they do not need instances.

· Note:
If you are calling a static method from within the class, you can omit the class name.

[image: image30.wmf]ã

SAP

AG 2002

Functional Methods

l

When defining:

§

Only one RETURNING parameter

§

Only IMPORTING parameters and exceptions are possible

l

When calling:

§

a) RECEIVING parameters possible

§

b) Various forms of direct call possible:

w

MOVE, CASE, LOOP

w

Logical expressions (IF, ELSEIF, WHILE, CHECK, WAIT)

w

Arithmetic expressions and bit expressions (COMPUTE),

see example: a = b + c

a = b +

Functional method

Example

· Methods that have a RETURNING parameter are described as functional methods. These methods cannot have EXPORTING or CHANGING parameters, but has many (or as few) IMPORTING parameters and exceptions as required.

· Functional methods can be used directly in various expressions:

· Logical expressions (IF, ELSEIF, WHILE, CHECK, WAIT)

· The CASE statement (CASE, WHEN)

· The LOOP statement

· Arithmetic expressions (COMPUTE)

· Bit expressions (COMPUTE)

· The MOVE statement.
[image: image31.wmf]ã

SAP

AG 2002

Functional Methods: Example

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

METHODS: get_average_fuel

IMPORTING im_

distance

TYPE s_distance,

im_fuel

TYPE ty_fuel

RETURNING

VALUE(

re

_

fuel

) TYPE

ty

_

fuel

,

ENDCLASS.

DATA: r_vehicle1 TYPE REF TO

lcl

_vehicle,

r_vehicle2 TYPE REF TO lcl_vehicle,

avg_fuel TYPE ty_fuel.

...

* example for short syntax in aritmet. operation

avg_fuel =

r_vehicle1

-

>get_average_fuel(im_distance = 500 im_fuel = 50)

+ r_vehicle2

-

>get_average_fuel(im_distance = 600 im_fuel = 60).

· Depending on the number of IMPORTING parameters, the syntax for functional methods is as follows (same for static functional methods):

· No IMPORTING parameters:
ref->func_method()
· Exactly 1 IMPORTING parameter:
ref->func_method(p1) or

ref->func_method(im_1 = p1)

· Several IMPORTING parameters:
ref->func_method(im_1 = p1 im_2 = p2)
· Example of detailed syntax for functional method call:

CALL METHOD r_vehicle->get_average_fuel
 EXPORTING im_distance = 500
 im_fuel = 50
 RECEIVING re_fuel = avg_fuel.

Here, re_fuel is the formal parameter of the interface and avg_fuel is the actual parameter of the calling program.
[image: image32.wmf]ã

SAP

AG 2002

External Access to Public Attributes

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

DATA: make TYPE

string

READ

-

ONLY.

“just a demo

CLASS

-

DATA: n_o_vehicles TYPE i READ

-

ONLY.

“just a demo

...

ENDCLASS.

...

DATA: r_vehicle TYPE REF TO

lcl

_vehicle.

DATA: make_name TYPE string,

count TYPE i.

START

-

OF

-

SELECTION.

*

*

main program, think of a client !

CREATE OBJECT r_vehicle.

make_name =

r_vehicle

-

>make.

“only if public attr.

count =

lcl

_vehicle=>n_o_vehicles

.

“only if public attr.

(2)

lcl

_vehicle

make

...

r_vehicle

There are different ways of accessing public attributes from outside the class:

· You access static attributes using <classname>=><class_attribute>
· You access instance attributes using <instance>-><instance_attribute>
· => and -> are the component selectors

[image: image33.wmf]ã

SAP

AG 2002

Classes, attributes, and methods

Classes, attributes, and methods

Objects, instances of classes

Objects, instances of classes

Accessing attributes and methods

Accessing attributes and methods

The constructor

The constructor

Additional principles

Additional principles

Principles (4)

[image: image34.wmf]ã

SAP

AG 2002

Constructor

l

Special method for creating

objects with defined initial state

l

Only has IMPORTING

parameters and EXCEPTIONS

l

Is executed only once per

instance

CREATE

OBJECT

METHODS

constructor

IMPORTING <

im

_parameter>

EXCEPTIONS <exception>.

METHODS

constructor

IMPORTING <

im

_parameter>

EXCEPTIONS <exception>.

lcl

_vehicle

-

make

-

model

-

n_o_vehicles

...

+ constructor

...

(3)

lcl

_vehicle

Private

Public

· The constructor is a special instance method in a class with the name constructor. The following rules apply:

· Each class can have one constructor.

· The constructor is automatically called at runtime within the CREATE OBJECT statement.

· If you need to implement the constructor, then you must define and implement it in the PUBLIC SECTION.

· When exceptions are raised in the constructor, instances are not created, so no main memory space is occupied.
[image: image35.wmf]ã

SAP

AG 2002

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

METHODS

constructor

IMPORTING

im

_make TYPE string

im

_model TYPE string.

PRIVATE SECTION.

DATA: make TYPE string, weight TYPE p.

CLASS

-

DATA n_o_vehicles TYPE i.

ENDCLASS.

CLASS

lcl

_vehicle IMPLEMENTATION.

METHOD

constructor

.

make =

im

_make.

model =

im

_model.

ADD 1 TO n_o_vehicles.

ENDMETHOD.

ENDCLASS.

Constructor: Example

DATA r_vehicle TYPE REF TO

lcl

_vehicle.

...

CREATE OBJECT

r_vehicle

EXPORTING

im

_make = 'Ferrari'

im

_model = 'F40'.

Automatic constructor call

Call from the

main program

· You need to implement the constructor when, for example:

· You need to allocate (external) resources

· You need to initialize attributes that cannot be covered by the VALUE addition to the DATA statement

· You need to modify static attributes

· You cannot normally call the constructor explicitly.

[image: image36.wmf]ã

SAP

AG 2002

Preview: Static Constructor

CLASS

lcl

_

vehicle

DEFINITION.

PUBLIC SECTION.

CLASS

-

METHODS:

CLASS_CONSTRUCTOR.

PRIVATE SECTION.

CLASS

-

DATA: n_o_

vehicles

TYPE I.

ENDCLASS.

l

Special static method

l

Automatically called before

the class is first accessed

l

Only executed once per

program

CLASS

lcl

_

vehicle

IMPLEMENTATION.

METHOD

CLASS_CONSTRUCTOR

.

...

ENDMETHOD.

...

ENDCLASS.

*

Static Constructor is called before following statements

:

*

demo

1

CREATE OBJECT r_

vehicle

.

*

demo

2

counter

=

lcl

_

vehicle

=>n_o_

vehicles

.

“

if attribute is public

*

demo

3

lcl

_

vehicle

=>

get

_

count

(

importing re

_

count

=

counter

).

· The static constructor is a special static method in a class with the name class_constructor. It is executed precisely once per program. The static constructor of a class <classname> is called automatically when the class is first accessed, but before any of the following actions are executed:

· Creating an instance in the class using CREATE OBJECT <obj>, where <obj> has the data type REF TO <classname>
· Addressing a static attribute using <classname>=><attribute>
· Calling a static attribute using CALL METHOD <classname>=><classmethod>
· Registering a static event handler method using SET HANDLER <classname>=><handler_method> FOR <obj>
· Registering an event handler method for a static event in class <classname>.

· The static constructor cannot be called explicitly.

[image: image37.wmf]ã

SAP

AG 2002

Principles (5)

Classes, attributes, and methods

Classes, attributes, and methods

Objects

,

instances of classes

Objects

,

instances of classes

Accessing attributes

and

methods

Accessing attributes

and

methods

The constructor

The constructor

Additional principles

Additional principles

[image: image38.wmf]ã

SAP

AG 2002

Namespace Within a Class

l

The same namespace for

n

Attributes

n

Methods

n

Events

n

Types

n

Constants

n

ALIAS names

l

There is a local namespace within

methods

lcl

_vehicle

Private

components

Method

implementation

Public

components

Attribute

make

Method

make

· Within a class, attribute names, method names, event names, constant names, type names and alias names all share the same namespace.

· There is a local namespace within methods. Definitions of local variables can cover components in one class.

[image: image39.wmf]ã

SAP

AG 2002

The Reference Variable ME

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

METHODS constructor

IMPORTING im_make TYPE

string

im_modell TYPE string.

PRIVATE SECTION.

DATA make TYPE

string

.

...

ENDCLASS.

CLASS

lcl

_vehicle IMPLEMENTATION.

METHOD constructor.

“

just a demo

DATA make TYPE string VALUE 'Benz'.

CONCATENATE

im

_make make INTO

ME

-

>make

.

ENDMETHOD.

METHOD DUMMY.

* calling own methods from inside class

* call method display_attributes()

* with the short syntax variant:

display_attributes().

ENDMETHOD.

ENDCLASS.

lcl_vehicle

Private

components

Method

implementation

Public

components

Attribute

make

ME

-

>make

· You can address the object itself within instance methods using the implicitly available reference variable me.

· Description of example:
In the constructor, the instance attribute make is covered by the locally defined variable make. In order to still be able to address the instance attribute, you need to use me.

· The dummy method demonstrates how to call a class's own method. You can omit the prefix me->.

· Other important use:
An object calls another object's method and passes its own address.

[image: image40.wmf]ã

SAP

AG 2002

l

Create classes

l

Create objects

l

Call methods

l

Explain how the garbage collector works

You are now able to:

Principles of Object

-

Oriented Programming: Unit

Summary

Principles of Object-Oriented Programming Exercises

	[image: image41.png]

	Unit:
Principles of Object-Oriented Programming

Topic:
Creating a Class

	[image: image42.png]

	At the conclusion of these exercises, you will be able to:

· Create a local class

	[image: image43.wmf]
	An airline needs to manage its airplanes.

	[image: image44.jpg]

	Model solution:
SAPBC401_AIRS_MAIN_A

SAPBC401_AIRS_A include program

1-1
Create the package ZBC401_## (where ##: is your group number) and save all the repository objects you have created during the course in this package.

1-2
Create the main program ZBC401_##_MAIN_AIRPLANE and the include program ZBC401_##_AIRPLANE the main program contains (##: group number).

1-3

Create the class lcl_airplane in the include program.

1-3-1
This class has two private instance attributes:

- name
- planetype.

The attribute for the airplane name should be of the type STRING. Define the attribute for the plane type using the table field saplane-planetype.

1-3-2
The class has a private static attribute:
 - n_o_airplanes.
This attribute should be type I.

1-3-3
The class has a public instance method set_attributes to set the private instance attributes name and plane type. Enter two corresponding importing parameters for the declaration of the method in the definition part. The definition of these parameters should be analogous to the two attributes.
Implement the method in the implementation part; set both attributes. Each time the method is called, the static attribute n_o_airplanes should increase by one. (This is actually not right but will be corrected later).

1-3-4
The class is to have another public instance method display_attributes to display the instance attributes. Declare this method and, in the implementation part, output the attributes using the WRITE statement (you can also display the icon icon_ws_plane, in which case you must add TYPE-POOLS icon to the program.

1-3-5
Declare and implement a public static method display_n_o_airplanes to display the static attribute n_o_airplanes.

(In the remaining exercises in this course, you can always start with the program you created in the previous exercise or copy the corresponding model solution and continue working with this program.)

Exercises

	[image: image45.png]

	Unit:
Principles of Object-Oriented

Programming

Topic:
Instantiating Objects

	[image: image46.png]

	At the conclusion of these exercises, you will be able to:

· Instantiate objects

	[image: image47.jpg]

	Model solution:
SAPBC401_AIRS_MAIN_B

SAPBC401_AIRS_A include program

2-1
Create a reference to the class lcl_airplane.

2-2
Define an internal table for buffering objects of the class lcl_airplane. The type of the internal table should therefore be REF TO lcl_airplane.

2-3
Create several objects of the class lcl_airplane and store them in the internal table.

2-4
Follow the program flow in the Debugger.

(In the remaining exercises in this course, you can always start with the program you created in the previous exercise or copy the corresponding model solution and continue working with this program.)

Exercises

	[image: image48.png]

	Unit:
Principles of Object-Oriented

 Programming

Topic:
Method Calls

	[image: image49.png]

	At the conclusion of these exercises, you will be able to:

· Call instance methods and static methods

	[image: image50.jpg]

	Model solution:
SAPBC401_AIRS_MAIN_C

SAPBC401_AIRS_C include program

3-1
Call the static method display_n_o_airplanes (before instantiating an object in class lcl_airplane).

3-2
Use the set_attributes method to set the attributes for all objects already created. Choose an airplane name and airplane type and pass them as text literals. (For the plane type you can use a type from the table SAPLANE, for example “747-400”.)

3-3
Display the object attributes using the display_attributes method.

3-4
Call the static method display_n_o_airplanes a second time.

3-5
Add a functional static method get_n_o_airplanes to the class lcl_airplane. The method must be public and have the re_count (type I) return parameter (no input parameters).

3-6
Test your functional method by calling it from the main program.

Exercises

	[image: image51.png]

	Unit:
Principles of Object-Oriented

Programming

Topic:
Constructor

	[image: image52.png]

	At the conclusion of these exercises, you will be able to:

· Create a constructor for a class

· Create an object using the constructor

	[image: image53.jpg]

	Model solution:
SAPBC401_AIRS_MAIN_D

SAPBC401_AIRS_D include program

4-1
Create a constructor for the class lcl_airplane (in your include program ZBC401_##_AIRPLANE) The simplest way of doing this is to copy the method set_attributes, which you now no longer need.

4-1-1
The constructor must have two importing parameters that fill the instance attributes name and planetype.

4-1-2
The static attribute n_o_airplanes should have an ascending sequence of one in the constructor.

4-2
In the method set_attributes, comment out the line in which the static attribute n_o_airplanes is increased by one (if you still want to use this method).

4-3
In the main program ZBC401_##_MAIN_AIRPLANE, extend the creation of the object with the constructor interface.
Fill the constructor’s interface parameters with the same values you used when calling the set_attributes method.

4-4
(Optional)
Comment out the method call set_attributes or delete the call.

Exercises

	[image: image54.png]

	Unit: Principles of Object-Oriented Programming

Topic: Calling a Private Method

	[image: image55.png]

	At the conclusion of these exercises, you will be able to:

· Call methods within a class

	[image: image56.jpg]

	Model solution:
SAPBC401_AIRS_MAIN_E

SAPBC401_AIRS_E include program

5
Create the private method get_technical_attributes for the class lcl_airplane (in your include program ZBC401_##_AIRPLANE).

5-1
The airplane type is the import parameter. (Type saplane-planetype)

5-2
The export parameter is the weight WEIGHT and the tank capacity TANKCAP. Refer to the types in the table SAPLANE.

5-3
The result, both export parameters are ascertained in a database access to the table SAPLANE.
Therefore, both attributes are read, depending on the airplane type.

5-4
If the imported plane type does not exist in the table, set default values (weight 100000, tank capacity 10000).

5-5
Test your method get_technical_attributes:

5-5-1

By calling it from the main program

5-5-2

By calling it within the display_attributes method
5-3-3

Which call was successful, and why?

Principles of Object-Oriented Programming Solutions
	[image: image57.png]

	Unit:
Principles of Object-Oriented

Programming
Topic:
Creating a Class

&---

*& Report SAPBC401_AIRS_MAIN_a *
&---

REPORT sapbc401_airs_main_a.
TYPE-POOLS icon.

INCLUDE SAPBC401_airs_A.
&---

*& Include SAPBC401_AIRS_A *
&---

--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.
 PUBLIC SECTION.
 "--------------------------------

 CONSTANTS: pos_1 TYPE i VALUE 30.
 METHODS: set_attributes IMPORTING
 im_name TYPE string
 im_planetype TYPE saplane-planetype,
 display_attributes.
 CLASS-METHODS: display_n_o_airplanes.
 PRIVATE SECTION.
 "----------------------------------

 DATA: name TYPE string,
 planetype TYPE saplane-planetype.
 CLASS-DATA: n_o_airplanes TYPE i.
ENDCLASS.
--

* CLASS lcl_airplane IMPLEMENTATION *
--

CLASS lcl_airplane IMPLEMENTATION.
 METHOD set_attributes.
 name = im_name.
 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.
 ENDMETHOD.
 METHOD display_attributes.
 WRITE: / icon_ws_plane as icon,
 / 'Name of airplane:'(001), AT pos_1 name,
 / 'Airplane type'(002), AT pos_1 planetype.
 ENDMETHOD.
 METHOD display_n_o_airplanes.
 WRITE: /, / 'Total number of planes'(ca1),
 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.
ENDCLASS.
Solutions
	[image: image58.png]

	Unit:
Principles of Object-Oriented

Programming
Topic:
Instantiating Objects

&---

*& Report SAPBC401_AIRS_MAIN_b *
&---

*& create and insert planes into internal table *
&---

REPORT sapbc401_airs_main_b.
TYPE-POOLS icon.
INCLUDE SAPBC401_airs_A.
DATA: r_plane TYPE REF TO lcl_airplane,
 plane_list TYPE TABLE OF REF TO lcl_airplane.
START-OF-SELECTION.
*##############################

 CREATE OBJECT r_plane.
 APPEND r_plane TO plane_list.
 CREATE OBJECT r_plane.
 APPEND r_plane TO plane_list.
 CREATE OBJECT r_plane.
 APPEND r_plane TO plane_list.
Solutions
	[image: image59.png]

	Unit:
Principles of Object-Oriented

Programming
Topic:
Method Calls

&---

*& Report SAPBC401_AIRS_MAIN_C *
&---

*& call method set_Attributes to initialize objects *
*& and visualize content of objects via display_attributes *
&---

REPORT sapbc401_airs_main_c.
TYPE-POOLS icon.
INCLUDE sapbc401_airs_c.
DATA: r_plane TYPE REF TO lcl_airplane,
 plane_list TYPE TABLE OF REF TO lcl_airplane,
 count type i.
START-OF-SELECTION.
*##############################

 lcl_airplane=>display_n_o_airplanes().
 CREATE OBJECT r_plane.
 APPEND r_plane TO plane_list.
 r_plane->set_attributes(im_name = 'LH Berlin'
 im_planetype = '747-400').
 CREATE OBJECT r_plane.
 APPEND r_plane TO plane_list.
 r_plane->set_attributes(im_name = 'AA New York'
 im_planetype = '737-100').
 LOOP AT plane_list INTO r_plane.
 r_plane->display_attributes().
 ENDLOOP.
lcl_airplane=>display_n_o_airplanes().
* calling the functional method get_n_o_airplanes
* long syntax for functional call:
* lcl_airplane=>get_n_o_airplanes(receiving re_count = count).
* short syntax for functional call:
count = lcl_airplane=>get_n_o_airplanes().
write: / 'Number of airplanes : ', count.
&---

*& Include SAPBC401_AIRS_C *
*& Develops functional static method get_n_o_airplanes *
&---

--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.
 PUBLIC SECTION.
 "--------------------------------

 CONSTANTS: pos_1 TYPE i VALUE 30.
 METHODS: set_attributes IMPORTING
 im_name TYPE string
 im_planetype TYPE saplane-planetype,
 display_attributes.
 CLASS-METHODS: display_n_o_airplanes,
 get_n_o_airplanes returning VALUE(re_count) type I.
 PRIVATE SECTION.
 "----------------------------------

 DATA: name TYPE string,
 planetype TYPE saplane-planetype.
 CLASS-DATA: n_o_airplanes TYPE i.
ENDCLASS.
--

* CLASS lcl_airplane IMPLEMENTATION *
--

CLASS lcl_airplane IMPLEMENTATION.
 METHOD set_attributes.
 name = im_name.
 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.
 ENDMETHOD.
 METHOD display_attributes.
 WRITE: / icon_ws_plane as icon,
 / 'Name of airplane:'(001), AT pos_1 name,
 / 'Airplane type'(002), AT pos_1 planetype.
 ENDMETHOD.
 METHOD display_n_o_airplanes.
 WRITE: /, / 'Total number of planes'(ca1),
 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.
 method get_n_o_airplanes.
 re_count = n_o_airplanes.

 endmethod.
ENDCLASS.
Solutions
	[image: image60.png]

	Unit:
Principles of Object-Oriented

Programming
Topic:
Constructor

&---

*& Report SAPBC401_AIRS_MAIN_d *
&---

*& call constructor of class lcl_airplane *
&---

REPORT sapbc401_airs_main_d.
TYPE-POOLS icon.
INCLUDE sapbc401_airs_d.
DATA: r_plane TYPE REF TO lcl_airplane,
 plane_list TYPE TABLE OF REF TO lcl_airplane.
START-OF-SELECTION.
*##############################

 lcl_airplane=>display_n_o_airplanes().
 CREATE OBJECT r_plane exporting im_name = 'LH Berlin'
 im_planetype = '747-400'.
 APPEND r_plane TO plane_list.
 CREATE OBJECT r_plane exporting im_name = 'AA New York'
 im_planetype = '737-100'.
 LOOP AT plane_list INTO r_plane.
 r_plane->display_attributes().
 ENDLOOP.
 lcl_airplane=>display_n_o_airplanes().
&---

*& Include SAPBC401_AIRS_d *
&---

--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.
 PUBLIC SECTION.
 "--------------------------------

 CONSTANTS: pos_1 TYPE i VALUE 30.
 METHODS: constructor IMPORTING
 im_name TYPE string
 im_planetype TYPE saplane-planetype,
 display_attributes.
 CLASS-METHODS: display_n_o_airplanes.
 PRIVATE SECTION.
 "----------------------------------

 DATA: name TYPE string,
 planetype TYPE saplane-planetype.
 CLASS-DATA: n_o_airplanes TYPE i.
ENDCLASS.
--

* CLASS lcl_airplane IMPLEMENTATION *
--

CLASS lcl_airplane IMPLEMENTATION.
 METHOD constructor.
 name = im_name.
 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.
 ENDMETHOD.
 METHOD display_attributes.
 WRITE: / icon_ws_plane as icon,
 / 'Name of airplane'(001), AT pos_1 name,
 / 'Airplane type: '(002), AT pos_1 planetype.
 ENDMETHOD.
 METHOD display_n_o_airplanes.
 WRITE: /, / 'Number of airplanes: '(ca1),
 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.
ENDCLASS.
Solutions
	[image: image61.png]

	Unit:
Principles of Object-Oriented

Programming
Topic:
Calling a Private Method

&---

*& Report SAPBC401_AIRS_MAIN_e *
*& *

&---

*& inside display_attributes a private method is called to get *
*& further details on technical aspects of the planetype *
&---

REPORT sapbc401_airs_main_e.
TYPE-POOLS icon.
INCLUDE sapbc401_airs_e.
DATA: r_plane TYPE REF TO lcl_airplane,
 plane_list TYPE TABLE OF REF TO lcl_airplane.
START-OF-SELECTION.
*##############################

 lcl_airplane=>display_n_o_airplanes().
 CREATE OBJECT r_plane exporting im_name = 'LH Berlin'
 im_planetype = '747-400'.
 APPEND r_plane TO plane_list.
 r_plane->display_attributes().
 CREATE OBJECT r_plane exporting im_name = 'AA New York'
 im_planetype = '727-200'.
 r_plane->display_attributes().
 lcl_airplane=>display_n_o_airplanes().
&---

*& Include SAPBC401_AIRS_e *
&---

--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.
 PUBLIC SECTION.
 "--------------------------------

 CONSTANTS: pos_1 TYPE i VALUE 30.
 METHODS: constructor IMPORTING
 im_name TYPE string
 im_planetype TYPE saplane-planetype,
 display_attributes.
 CLASS-METHODS: display_n_o_airplanes.
 PRIVATE SECTION.
 "----------------------------------

 METHODS: get_technical_attributes
 IMPORTING im_type type saplane-planetype
 EXPORTING ex_weight TYPE s_plan_wei
 ex_tankcap TYPE s_capacity.
 DATA: name TYPE string,
 planetype TYPE saplane-planetype.
 CLASS-DATA: n_o_airplanes TYPE i.
ENDCLASS. "lcl_airplane DEFINITION
--

* CLASS lcl_airplane IMPLEMENTATION *
--

CLASS lcl_airplane IMPLEMENTATION.
 METHOD constructor.
 name = im_name.
 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.
 ENDMETHOD. "constructor
 METHOD display_attributes.
 data: weight type saplane-weight,
 cap type saplane-tankcap.
 WRITE: / icon_ws_plane AS ICON,
 / 'Name of airplane'(001), AT pos_1 name,
 / 'Airplane type: '(002), AT pos_1 planetype.
 get_technical_attributes(exporting im_type = planetype
 importing ex_weight = weight
 ex_tankcap = cap).
 write: / 'wheight: '(003), weight,
 'tankcap: '(004), 60 cap.
 ENDMETHOD. "display_attributes
 METHOD display_n_o_airplanes.
 WRITE: /, / 'Number of airplanes: '(ca1),
 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD. "display_n_o_airplanes
 METHOD get_technical_attributes.
 SELECT SINGLE weight tankcap FROM saplane
 INTO (ex_weight, ex_tankcap)
 WHERE planetype = im_type.
 IF sy-subrc <> 0.
 ex_weight = 100000.
 ex_tankcap = 10000.
 ENDIF.
 ENDMETHOD. "get_technical_attributes
ENDCLASS. "lcl_airplane IMPLEMENTATION
© SAP AG
TAW10
6-59

