
0 [image: image1.wmf]ã

SAP

AG 2002

l

Procedural programming

l

Object

-

oriented programming

l

Aims of the ABAP Objects programming language

Contents:

Introduction to Object

-

Oriented Programming

[image: image2.wmf]ã

SAP

AG 2002

l

Name the most significant differences between

procedural and object

-

oriented programming

l

State the aims behind developing the ABAP

Objects programming language

At the conclusion of this unit, you will be able to:

Introduction to Object

-

Oriented Programming: Unit

Objectives

[image: image3.wmf]ã

SAP

AG 2002

History of Programming Languages

Machine language

Assembler

Java

C++

ABAP Objects

ABAP

· Before ABAP, SAP used a macro assembler.

· ABAP was created with the intention of improving reporting. ABAP developed almost independently as an in-house programming language, although it was influenced by other programming languages, for example, COBOL and PASCAL.

· ABAP Objects is a true extension of ABAP. ABAP Objects unites the most promising aspects of other object-oriented programming languages, such as Java, C++, and Smalltalk.

[image: image4.wmf]ã

SAP

AG 2002

Introduction: Programming Models (1)

Procedural programming

Procedural programming

Object

-

oriented programming

Object

-

oriented programming

[image: image5.wmf]ã

SAP

AG 2002

Characteristics of Procedural Programming

Characteristics:

l

Separation of functions and data

l

Possibility of encapsulating

functions using modularization

l

Direct access to data possible

-

visibility?

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

· Information systems were previously defined primarily by their functions: Data and functions were stored separately and linked using input-output relationships.
[image: image6.wmf]ã

SAP

AG 2002

REPORT ZABAP_DEMO.

*

TYPES: ...

DATA: ...

...

PERFORM form1 ...

CALL FUNCTION 'FB1'

...

CALL FUNCTION 'FB2'

...

*

FORM f1 ...

...

ENDFORM.

REPORT ZABAP_DEMO.

*

TYPES: ...

DATA: ...

...

PERFORM form1 ...

CALL FUNCTION 'FB1'

...

CALL FUNCTION 'FB2'

...

*

FORM f1 ...

...

ENDFORM.

Typical ABAP Program

l

Type definitions

l

Data declarations

l

Main program

§

Calling subroutines

§

Calling function modules

l

Definition of subroutines

· A typical ABAP program consists of type definitions and data declarations, which describe the blueprint of the data the program uses when it is executed.

· To make your program more readable and for better program structure, it is recommended that you work with modularization units (encapsulated units with functions), such as form routines or function modules. These components can be reused in many different programs.

[image: image7.wmf]ã

SAP

AG 2002

ABAP Main Memory and Function Groups

Internal session

Internal session

Global data objects in

main program

Subroutines

Function groups

Function group 2

Function module 1

Function module 2

Function group 1

Function module 1

Function module 2

Function module ...

Global data

Global data

Interface

Interface

Interface

Interface

· This slide provides an overview of the main program components during program execution in an internal session (main memory area on application server).

· The loaded main program and the two function groups with their encapsulated modules (the function modules) are both in separate memory areas.

· From the main program, you can use function modules to access function group components, for example their global data. Therefore, a function group is a unit consisting of data and functions that manage this data.

· A user "client" (here, the main program) can only access the function groups and their services using the interface, that is the function modules. The function group acts as a "server", because it provides services.

[image: image8.wmf]ã

SAP

AG 2002

Function Group Example

FUNCTION

-

POOL s_vehicle.

* speed is a global variable

* used in the

funtion

-

pool

DATA:

speed

TYPE I.

...

FUNCTION

INC_SPEED

.

...

ADD imp_speed TO speed.

ENDFUNCTION.

FUNCTION

DEC_SPEED

.

...

SUBTRACT IMP_SPEED from speed.

ENDFUNCTION.

FUNCTION

GET_SPEED.

exp

_speed = speed.

ENDFUNCTION.

...

FUNCTION

-

POOL s_vehicle.

* speed is a global variable

* used in the

funtion

-

pool

DATA:

speed

TYPE I.

...

FUNCTION

INC_SPEED

.

...

ADD imp_speed TO speed.

ENDFUNCTION.

FUNCTION

DEC_SPEED

.

...

SUBTRACT IMP_SPEED from speed.

ENDFUNCTION.

FUNCTION

GET_SPEED.

exp

_speed = speed.

ENDFUNCTION.

...

Function group with

functions for controlling

the speed of a car

S_VEHICLE

inc

_speed

dec

_speed

get_speed

stop

speed

· The function group s_vehicle provides a user or client with the services inc_speed, dec_speed, and get_speed.

· These services make up the function group interface and access the internally encapsulated component speed.

[image: image9.wmf]ã

SAP

AG 2002

REPORT

zvehicledemo

.

TYPES: ...

DATA:

wa

_car TYPE ...

* no direct access to speed

* use functions of pool

CALL FUNCTION 'INC_SPEED'

...

CALL FUNCTION 'GET_SPEED'

...

CALL FUNCTION 'STOP'

...

REPORT

zvehicledemo

.

TYPES: ...

DATA:

wa

_car TYPE ...

* no direct access to speed

* use functions of pool

CALL FUNCTION 'INC_SPEED'

...

CALL FUNCTION 'GET_SPEED'

...

CALL FUNCTION 'STOP'

...

Use of Function Group

inc

_speed

dec

_speed

get_speed

stop

Main program that uses

function modules of this

function group

S_VEHICLE

speed

· The main program cannot access speed directly.

[image: image10.wmf]ã

SAP

AG 2002

Several Instances of One Function Group

S_VEHICLE

inc

_speed

dec

_speed

get_speed

stop

speed

?

Displaying a number of

vehicles and their speed is

only possible with

additional administration

· If the main program is to work with several vehicles, this is not possible without extra programming and administration effort.

[image: image11.wmf]ã

SAP

AG 2002

Instantiation and Object

-

Oriented Languages

speed

speed

speed

speed

Multiple instances (objects)

of the same blueprint (type or

class) are a fundamental

attribute of object

-

oriented

languages

· The ability to create multiple instances of a "class", such as a vehicle, is one of the central attributes of object-oriented languages.

[image: image12.wmf]ã

SAP

AG 2002

Introduction: Programming Models (2)

Procedural programming

Procedural programming

Object

-

oriented programming

Object

-

oriented programming

[image: image13.wmf]ã

SAP

AG 2002

Programming Models

Data and functions

Object model as

abstraction of

real

world

Real world

Data

Data

Data

Data

Data

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Data

Functions

Functions

Functions

Data

Functions

Functions

Functions

Data

Functions

Functions

Functions

· The left part of the slide shows that, with procedural software systems, data and functions are often:

· Created separately

· Stored separately

· Linked with input-output relations

· Objects form capsules containing the data itself and the behavior of that data. Objects enable you to draft a software solution that is a one-to-one reflection of the real-life problem area.
[image: image14.wmf]ã

SAP

AG 2002

Characteristics of the Object

-

Oriented Approach

l

Objects are an abstraction of the real

world

l

Processes can be implemented

realistically

l

Objects are units made up of data and the

functions belonging to that data

l

Improves software structure and

consistency in the development process

l

Maintenance requirements are reduced

l

Modeler

, end user, and developer are all

included in analysis and design process

Real world

· In object-oriented programming, data and functions are developed together. Object orientation focuses on objects that represent either abstract or concrete things in the real world. They are first viewed in terms of their characteristics, which are displayed using the object's internal structure and attributes (data).

· The behavior of objects is described through methods (functions) and events.

· Consistency throughout the software development process:
The "language" used in the various phases of software development (analysis, specification, design, and implementation) is uniform. Ideally, changes made to the design during the implementation phase will flow back into the design automatically.

· The aim is to use this concept to:

· Implement processes realistically and, at the same time, better involve the modeler and developer in the software design

· Achieve optimized structuring and maintenance of the software and hence reduce the work required

[image: image15.wmf]ã

SAP

AG 2002

Technical Implementation of the Object

-

Oriented

Approach

Code 4

Code 1

Code 2

Code 3

display_data

Data

Data

Functions

Functions

Functions

Functions

l

Encapsulation of data and functions

l

Polymorphism for support of generic

programming

l

Inheritance

l

Improved structuring and consistency in the software

development process

Superclass

Subclass 1

Subclass 2

· Encapsulation
Encapsulation means that the implementation of an object is hidden from other components in the system, so that they cannot make assumptions about the internal status of the object and therefore dependencies on specific implementations do not arise.
· Polymorphism
Polymorphism (ability to have multiple forms) in the context of object technology signifies that objects in different classes react differently to the same messages.

· Inheritance
Inheritance defines the implementation relationship between classes, in which one class (the subclass) shares the structure and the behavior defined in one or more other classes (superclasses).
Note: ABAP Objects only allows single inheritance.
[image: image16.wmf]ã

SAP

AG 2002

Client/Server

Behavior

l

Objects behave towards each other just like

client/server systems

l

Objects normally adopt both roles

l

Responsibilities must be specified between the objects

Server

Client

Data

Data

Methods

Methods

Data

Data

Methods

Methods

CALL METHOD server

-

>

do_it

do_it

call_it

· Objects behave like client/server systems: When an object calls a method of another object, it automatically becomes the client of the other (server) object. This gives rise to two conditions:
- The client object must adhere to the protocol of the server object

- The protocol must be clearly described so that a potential client can follow it without problem

· Objects normally adopt both roles Every object is a potential server object, and when it is called by a method of another object, it becomes a client object too.

· Establishing logical business and software/technical responsibilities between classes results in a true client/server software system in which redundancy is avoided.

[image: image17.wmf]ã

SAP

AG 2002

Compatibility and Design Aims

Compatibility:

l

ABAP Objects is a true,

compatible extension of ABAP

l

ABAP Objects statements can

be used in procedural ABAP

programs

l

Objects (classes) themselves

contain classic ABAP

statements

Design aims were:

l

As simple as possible

l

Only object

-

oriented concepts

that have proved useful

l

Increased use of type checks

* ABAP Objects

Programm

DATA: counter TYPE i,

wa

type KNA1.

...

CLASS

lcl

_car DEFINITION.

...

ENDCLASS

.

*

main program

CREATE OBJECT

...

counter = counter + 1.

MOVE

wa

TO ...

* ABAP Objects

Programm

DATA: counter TYPE i,

wa

type KNA1.

...

CLASS

lcl

_car DEFINITION.

...

ENDCLASS

.

*

main program

CREATE OBJECT

...

counter = counter + 1.

MOVE

wa

TO ...

· ABAP Objects is not a new language, but has been developed as an extension of ABAP. It integrates seamlessly into ABAP syntax and the ABAP programming model. All enhancements are strictly upward compatible.

· In ABAP objects, types have to be assigned more strictly than in ABAP. - for example, when defining interface parameters for methods, you must type the parameters. The correct pass by value is then checked by the system when the method is called.

· In ABAP Objects, the ABAP language has been cleaned up. As part of this language clean up, the system sometimes executes stricter syntax checks for previously permitted constructions and obsolete statements are not allowed. The stricter syntax checks usually result in a syntax that should also be used outside ABAP Objects, but where the old forms cannot be prohibited for compatibility reasons.
For further information, refer to the ABAP Objects documentation under Replacement of Obsolete Statements.

[image: image18.wmf]ã

SAP

AG 2002

ABAP Main Memory and Encapsulation

Internal session

Internal session

Internal session

Internal session

Data

Data

Functions

Functions

Global data objects

Global data objects

Data

Data

Functions

Functions

l

Data

and business

functions

are

encapsulated in objects

Modularization units

l

Modularization units for

encapsulating

functions

l

Working with global data

of the main program

· One feature and design aim of object-oriented languages is that business functions are held separately.

· The client (in this case, the main program) uses the addresses of the objects (pointers or reference variables) to access their encapsulated functions. Amongst other things, this concept is to improve the structuring, reusability, and maintainability of the software.

[image: image19.wmf]ã

SAP

AG 2002

The Software Development Process

Implementation

(ABAP Objects)

Analysis and

design

Requirement,

idea

Test

Iteration

Already specified for the

purposes of this course

· In object-oriented programming, the analysis and design phase is even more important than it is for procedural programming. The reason for this is that in object-oriented programming, decisions taken during the analysis and design phase have even more pronounced effects on implementation than they do in procedural programming.

[image: image20.wmf]ã

SAP

AG 2002

l

Name the most significant differences between

procedural and object

-

oriented programming

l

State the aims behind developing the ABAP

Objects programming language

You are now able to:

Introduction to Object

-

Oriented Programming:

Summary

© SAP AG
TAW10
4-1

