
BC ABAP Workbench Tools

H
E

L
P

.B
C

D
W

B
T

O
O

Re lease 4 .6C

BC ABAP Workbench Tools SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG BC ABAP Workbench Tools

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

BC ABAP Workbench Tools SAP AG

4 April 2001

Contents

BC ABAP Workbench Tools ... 11
New Features in Release 4.6C...12
Object Navigator...20
Working With Development Objects ... 23

Selecting Objects ..25
Creating New Objects ...27

Creating a Program..29
Copying Objects..31
Deleting Objects..33
Assigning an Object to a Different Development Class ..34
Activating Objects ...35
Using Set Mode...36

Navigation ... 37
Navigation Areas...38

Hiding the Navigation Area ..40
Navigating in the Tool Area...41
Object List Functions...42
Navigation Stack ...43
Navigation Context..44
Worklist..45

Setting Markers..47
User-Specific Settings .. 48
Integrating Internet Services...51
Web Application Builder... 52

Creating an Internet Service ...53
Using Mixed Mode ...57

Creating HTML Templates ..58
Extending HTML Templates..62
Adding MIME Objects ...64
Creating Language Resources ...66
Publishing a Service..68
Executing a Service ..69

User Settings for Internet Services ... 72
Documentation Not Available in Release 4.6C... 75

Documentation Not Available in Release 4.6C...76
Documentation Not Available in Release 4.6C...77
Documentation Not Available in Release 4.6C...78
Documentation Not Available in Release 4.6C...79
Documentation Not Available in Release 4.6C...80
Documentation Not Available in Release 4.6C...81
Documentation Not Available in Release 4.6C...82
Documentation Not Available in Release 4.6C...83

ABAP Workbench: Tools...84
Overview of the Workbench... 86

Tool Integration and Working Methods ...87
Development Objects and Development Classes...88

 SAP AG BC ABAP Workbench Tools

April 2001 5

Development in a Team Environment ...89
Further Reading ..91

ABAP Editor ... 92
Introduction to the ABAP Editor ..93

The Frontend Editor ...94
Table Control Mode ...97
Changing the Editor Mode ...100
Local Editing...101

Creating a Program...103
Editing the Source Code ...105

Navigating in the Source Code ..106
Navigating By Double-Click ..108
Using Compression Logic...110

Editing Source Code (Frontend Editor)..111
Editing Source Code (Backend Editor ...115
Using Buffers ...117
Find and Replace (Frontend Editor) ..119
Search and Replace (Backend Editor) ..120
Inserting Statement Patterns ...122
Inserting Patterns Using Drag and Drop..125
Expanding Includes..126
Using ABAP Help...127
Improving the Layout ...129

Features of the Pretty Printer..131
Saving and Activating Programs...132
Checking Programs...133

Extended Program Check..135
Maintaining Text Elements ... 140

Maintaining Text Elements: Overview...141
Initial Screen ..142

Creating and Maintaining Text Elements ..143
Creating List and Column Headings ..144
Maintaining Selection Texts ...146
Maintaining Text Symbols..148

Analyzing Text Elements...151
Analyzing Selection Texts..152
Analyzing Text Symbols...154

Copying Text Elements ...159
Translating Text Elements ..160

Variants .. 162
Variants: Overview ..163

Initial Screen ..165
Displaying an Overview of Variants ..166
Creating and Maintaining Variants..167

Creating Variants ...168
Variant Attributes ...170
Changing Variants ...173

BC ABAP Workbench Tools SAP AG

6 April 2001

Deleting Variants..174
Printing Variants...175

Variable Values in Variants ...176
Using Variables for Date Calculations ...177
User-specific Selection Variables ..179

Creating User-specific Variables ..180
Changing Values Interactively ..181
Changing Values from a Program ..182

Fixed Values from Table TVARV...183
Creating Table Variables in Table TVARV ...184
Changing Entries in Table TVARV ...186

Executing a Program with a Variant..189
Maintaining Messages .. 190

Creating Message Classes ...191
Adding Messages..192
Creating a Message Long Text...193
Assigning IMG Activities to a Message...194

The Splitscreen Editor .. 195
Overview ...196
Starting the Splitscreen Editor...197
Initial Screen..198
Special Splitscreen Editor Functions ..199
Editor Functions ..201

Class Builder.. 202
Introduction to the Class Builder ...203

Naming Conventions in ABAP Objects..207
Overview of Existing Object Types ...212

Class Browser ..213
Creating Object Types ..215

Initial Screen ..216
Creating New Classes ...218
Creating New Interfaces ..220

Defining Components..222
Class Editor..224
Creating Attributes ...226
Creating Methods...228
Creating Parameters and Exceptions ..230
Implementing Methods...232
Creating Events ...233
Creating Internal Types in Classes..235

Defining Relationships Between Object Types ...237
Implementing Interfaces in Classes...239
Creating Subclasses ..241

Extending Subclasses ..243
Nesting Interfaces ..245

Activating Classes and Interfaces...246
Testing...250

Testing a Class ..251

 SAP AG BC ABAP Workbench Tools

April 2001 7

Creating Instances ...253
Testing Attributes ...255
Testing Methods ..257
Testing Event Handling..259
Testing an Interface View of an Object..260

Screen Painter ... 262
Screen Painter Concepts ..263
Screen Painter: Initial Screen..265
Creating Screens ..267
The Flow Logic Editor ...270

Flow Logic Keywords ...272
Graphical Layout Editor...274

Overview of Screen Layout..278
Screen Elements ..279

Selecting Fields ...283
Creating Screen Elements without Fields ...285
Modifying Screen Elements...286
Using Icons..288
Using Radio Buttons..290
Tabstrip Controls ...291

Defining a Tabstrip Control...293
Using the Tabstrip Control Wizard ...297

Table Controls ...299
Defining a Table Control...301
Using the Table Control Wizard ...303
Editing Table Controls ..305

Creating a Custom Container ..306
Working with Step Loops...309

Converting a Step Loop..311
Element List in Graphical Mode...312

The Alphanumeric Fullscreen Editor ...315
Creating Screen Elements ...317

Using Dictionary and Program Fields on a Screen ..319
Creating and Modifying Table Controls ..321
Creating a Tabstrip Control...324
Creating an SAP Custom Container...326
Creating and Modifying Step Loops ...328

Modifying Screen Elements ...330
Converting Elements..332
Using the Field List View..333

Defining the Element Attributes...335
General Attributes ..336
Dictionary Attributes...339
Program Attributes ...341
Display Attributes ...343
Tabstrip Control Attributes ...345

BC ABAP Workbench Tools SAP AG

8 April 2001

Table Control Attributes ...346
Custom Container Attributes..347
Choosing Field Formats...348

Testing Screens ..350
Checking Screens ...351
Saving, Activating, and Deleting Screens ...352

Menu Painter.. 353
The Menu Painter: Introduction...354
The Menu Painter Interface...361
Menu Painter: Initial Screen..363
Creating a GUI Title ..365
Defining a Status...366

Creating a GUI Status..367
Creating a Context Menu...369
Working with Menu Bars ..371

Creating a Menu Bar...372
Observing Standards ..373
Adding Functions to a Menu...374

Defining Function Key Settings..377
Defining an Application Toolbar ...379

Defining Icons in the Application Toolbar ...381
Fixed Positions ...384
Inserting Separators ...385

Creating the Standard Toolbar...386
Testing and Activating a Status...387

Using the Extended Check ..388
Copying a Status...389
Linking Objects in a GUI Status ..393
Working with Overview Lists ...395

Area Menu Maintenance from Release 4.6A...396
Functions...397

Using Function Types ..398
Defining a Fastpath..399
Activating and Deactivating Function Codes ...400
Deactivating Functions at Runtime ..402
Defining Dynamic Function Texts ..403
Defining Dynamic Menu Texts...405

Setting a GUI Status and GUI Title ...406
Evaluating Function Codes in the Program ..407

Function Builder.. 408
Overview of Function Modules..409

Initial Screen of the Function Builder ...413
Looking Up Function Modules ...415
Getting Information about Interface Parameters ...417
Calling Function Modules From Your Programs..420

Creating new Function Modules..424
Creating a Function Group...425

 SAP AG BC ABAP Workbench Tools

April 2001 9

Creating a Function Module...426
Specifying Parameters and Exceptions..428
Understanding Function Module Code ...430
Checking and Activating Modules ..434

Testing Function Modules..435
Saving Tests and Test Sequences ..439
Documenting and Releasing a Function Module...441

Debugger.. 444
Runtime Analysis .. 447
Performance Trace.. 449

Performance Trace: Overview ..451
Architecture and Navigation...452
Initial Screen ..453

Recording Performance Data..454
Starting the Trace ..455
Stopping the Trace...456

Analyzing Performance Data ..457
Display Filter ..458

Other Filters ..460
Displaying Lists of Trace Records ...462
Analyzing Trace Records...466

SQL Trace Analysis ..469
Embedded SQL ...470
Measured Database Operations ...471
Logical Sequence of Database Operations...472
Buffering ..473
Analyzing a Sample SQL Data File ...474
Example Explanation of an Oracle Statement ..477
Example Explanation of an Informix Statement ..479

Enqueue Trace Analysis...481
Enqueue Trace Records..482
Detailed Display of Enqueue Trace Records ..483

RFC Trace Analysis..484
RFC Trace Records...485
Detailed Display for RFC Trace Records ..486

Other Funtions ..487
Configuring the Trace File..488
Saving Lists Locally ...490
The Explain SQL Function ...491
Finding Dictionary Information ...493

Information About Development Objects ..494
Navigation and Information System: Overview.. 495
The Repository Information System ... 496

Environment Analysis..498
Determining the Environment ..499

Where-used Lists ..500

BC ABAP Workbench Tools SAP AG

10 April 2001

The Application Hierarchy.. 502
The Data Browser.. 504

Customizing the Data Browser Display...506
Other Data Browser Functions..507

Other Concepts...508
Inactive Sources.. 509

Concept ...510
Support in the ABAP Workbench Tools ..512

Activating Objects ..514
Overview of Inactive Objects ...515
Status Display ..516
Activating Classes and Interfaces..519

Effect of Inactive Sources on Operations..523
Further Effects...525
Inactive Sources and Modifications ..526

Business Add-Ins .. 527

 SAP AG BC ABAP Workbench Tools

BC ABAP Workbench Tools

April 2001 11

BC ABAP Workbench Tools

Topics in this Documentation
New Features in Release 4.6C [Page 12]

Object Navigator [Page 20]

Integrating Internet Services [Page 51]

ABAP Workbench Tools [Page 84]

Information About Repository Objects [Page 494]

New Concepts [Page 508]

BC ABAP Workbench Tools SAP AG

New Features in Release 4.6C

12 April 2001

New Features in Release 4.6C
The principal new feature in Release 4.6C is the integration of Internet services in the ABAP
Workbench using a new tool called the Web Application Builder. As well as this, wizards for
creating table controls and tabstrip controls have been introduced into the Screen Painter. There
are also additional navigation functions and new features in some of the individual tools and in
Business Add-Ins.

The New Features
Integrating Internet Services in the Object Navigator [Page 51]

Screen Painter

� Tabstrip Control Wizard
[Page 297]

� Table Control Wizard [Page
303]

 � References to the ABAP data
type STRING are now
allowed for input/output fields
on screens. Refer to the
Name attribute in the General
Attributes [Page 336] section.

 � New screen attribute: Hold
scroll position. For further
information, see Creating
Screens [Page 317].

Additional Functions in the Object Navigator

 � Persistent worklist [Page 45]
in the Object Navigator

� Insertion of statement
patterns using drag and drop.
For further information, refer
to Inserting Patterns Using
Drag and Drop [Page 125].

� History for object list
navigation.

 � Showing and hiding the
navigation area [Page 40].

ABAP Editor

 SAP AG BC ABAP Workbench Tools

 New Features in Release 4.6C

April 2001 13

 Additional functions avaiable in
the context menu of the frontend
editor:

� Navigation to a particular line.
For further information, refer
to Navigating in the Source
Code [Page 106].

� Buffer and block operations.
See also: Using Buffers
[Page 117].

Transaction Classification

 Transactions can be classified as
Professional User Transactions or
Easy Web Transactions. The GUI
Support group box allows you to
specify the GUI that is launched
when a user starts the transaction
from the mySAP.com workplace.

New Functions in Business Add-Ins [Page 527]

 � Create example and default
implementations

For a defined Business Add-In,
you can provide an example and
a default implementation with the
corresponding source code.

 • Extendable filter types

If implementations of filter-specific
definitions of Business Add-Ins
were only possible for existing
filter values, it is now possible to
create implementations for filter
values that do not yet exist.

BC ABAP Workbench Tools SAP AG

New Features in Release 4.6C

14 April 2001

 SAP AG BC ABAP Workbench Tools

 New Features in Release 4.6C

April 2001 15

BC ABAP Workbench Tools SAP AG

New Features in Release 4.6C

16 April 2001

 SAP AG BC ABAP Workbench Tools

 New Features in Release 4.6C

April 2001 17

BC ABAP Workbench Tools SAP AG

New Features in Release 4.6C

18 April 2001

 SAP AG BC ABAP Workbench Tools

New Features in Release 4.6C

April 2001 19

BC ABAP Workbench Tools SAP AG

Object Navigator

20 April 2001

Object Navigator
Use
The Object Navigator is a central point of entry into the ABAP Workbench. It is the successor of
the Repository Browser, and you can access it using transaction code SE80.

You use the Object Navigator to organize your programming in an integrated development
environment. It allows you to create, change, and manage objects.
Development objects are arranged together in object lists. Each object list contains all of the
objects in a certain category, such as development class, program, or global class.
From the object list, you can select an object by double-clicking it. The system automatically
opens the tool that you use to process that kind of object. See also Working with Development
Objects [Page 23].

To help you in your work, the Object Navigator provides a comprehensive set of navigation
functions. For further information, see Navigation [Page 37].

Special Features
� Use of controls

In redesigning the interface of the ABAP Workbench, SAP developers have used the SAP
Control Framework. The various controls that are used are all programmed using ABAP
Objects. For an overview of the controls used, refer to Controls and the ABAP Workbench
[Ext.].

� Separation of navigation and tool areas

The Object Navigator has separate areas for navigation and tools. For further information,
refer to Navigation Areas [Page 38].
The navigation area display the object list. The tool area, on the other hand, displays the
different development objects, each in its relevant tool.
The following tools are integrated in the tool area in the Object Navigator:
ABAP Dictionary, Class Builder, ABAP Editor, Function Builder, Screen Painter, Menu
Painter, and text element maintenance.
The remaining tools use the entire screen, and thus hide the navigation area when they are
open.

� Overview of components of an application

When you are editing a particular object in a tool, you can still see the other components
belonging to the program, development class, global class, or function group.

� Context-sensitive right-click in browser

In the navigation area, all of the functions that apply to objects are available from a context
menu (right-click). You can choose a function directly from this menu, for example, to start
the appropriate tool for editing the object.

 SAP AG BC ABAP Workbench Tools

Object Navigator

April 2001 21

� User-specific views

If you often need to work on the same objects in the ABAP Workbench, you can include them
in your favorites list.
If you need to return to the same objects frequently during a single work session, you can
include them in a worklist.

Components of the Interface

Navigation Area
� Object list

� Toolbar for object list display

� Context menu

BC ABAP Workbench Tools SAP AG

Object Navigator

22 April 2001

Tool Area
� ABAP Workbench tools

� Tool functions

� Menus

� Standard toolbar

� Application toolbar

� Context menu (only in the ABAP Editor in edit control mode)

Additional window

 SAP AG BC ABAP Workbench Tools

Working With Development Objects

April 2001 23

Working With Development Objects
Any component of an application program that is stored as a separate unit in the R/3 Repository
is called a development object or a Repository Object. In the SAP System, all development
objects that logically belong together are assigned to the same development class.

Object Lists
In the Object Navigator, development objects are displayed in object lists, which contain all of the
elements in a development class, a program, global class, or function group.
Object lists show not only a hierarchical overview of the development objects in a category, but
also tell you how the objects are related to each other. The Object Navigator displays object lists
as a tree.
The topmost node of an object list is the development class. From here, you can navigate right
down to the lowest hierarchical level of objects. If you select an object from the tree structure that
itself describes an object list, the system displays just the new object list.

For example:

Object types development class

Dictionary objects

Class library

Programs

Function groups

Includes

Message classes

Development class

PROG_NAME_01

Object types program

Dictionary objects

Fields

PBO modules

PAI modules

Subroutines

Includes

PROG_NAME_01

PROG_NAME_02

PROG_NAME_03

BC ABAP Workbench Tools SAP AG

Working With Development Objects

24 April 2001

Selecting an Object List in the Object Navigator
To select development objects, you use a selection list in the Object Navigator. This contains the
following categories:

Category Meaning

Application hierarchy A list of all of the development classes in the SAP System. This list is
arranged hierarchically by application components, component codes,
and the development classes belonging to them

Development class A list of all of the objects in the development class

Program A list of all of the components in an ABAP program

Function group A list of all of the function modules and their components that are
defined within a function group

Class A list of all of the components of a global class. It also lists the
superclasses of the class, and all of the inherited and redefined methods
of the current class.

Internet service A list of all of the componentse of an Internet service:
Service description, themes, language resources, HTML templates and
MIME objects.

When you choose an Internet service from the tree display, the Web
Application Builder is started.
See also Integrating Internet Services [Page 51].

Local objects A list of all of the local private objects of a user.

Objects in this list belong to development class $TMP and are not
transported. You can display both your own local private objects and
those of other users. Local objects are used mostly for testing. If you
want to transport a local object, you must assign it to another
development class. For further information, refer to Changing
Development Classes [Page 34]

 SAP AG BC ABAP Workbench Tools

Selecting Objects

April 2001 25

Selecting Objects

When you start the ABAP Workbench with the Object Navigator, the system displays
the last object list that you displayed. This also applies to new terminal sessions.

Procedure
To select any existing development object for processing in the Object Navigator:

1. On the initial screen, choose the type of object list from the object list selector.

2. Enter the name of the object in the input field.

This field is normally filled with the name of the last object that you processed.

If you want to see a list of the objects you have recently used, choose and select the
required entry.

Step 2 does not apply if you choose Application hierarchy in step 1.

3. Choose or press ENTER.

The requested object is displayed in tree form.

4. Select the required object by double-clicking.

If the object you selected is itself an object list (for example, a program within a
development class), the tree display changes so that only the selected object is
displayed.
In this case, you need to select the object again by double-clicking it.

In step 4, you can also open the required object by choosing Change from the
context menu. The system then opens the object in change mode.

Alternatively, you can open the object in a separate session in step 4 by choosing
Display � In new window.

Result
The Object Navigator automatically starts the tool with which the object was created and opens
the object in display mode. To switch to change mode, choose in the application toolbar.
If you choose an include, the Object Navigator starts the ABAP Editor and opens the include. If,
on the other hand, you choose a GUI status, the Object Navigator starts the Menu Painter in
which to open the status.

In each tool, you can use the Other object function to select another object from the
same or another category. For example, if you have opened an include in the ABAP
Editor, choose Program � Other object to choose another include or a further object or
component.

See also:

BC ABAP Workbench Tools SAP AG

Selecting Objects

26 April 2001

Working with Development Objects [Page 23]

Creating New Objects [Page 27]

 SAP AG BC ABAP Workbench Tools

Creating New Objects

April 2001 27

Creating New Objects
The procedure for creating new development objects in the Object Navigator varies slightly
depending on whether there an object with the same category already exists in the object list or
not. If one exists, a node for that type of object is visible in the tree display. In this case, the
corresponding context menu is available.

Procedure
To create a new development object where the object node already exists in the object list:

1. Select the corresponding object node.

2. Choose Create from the context menu (right-click).

A dialog box appears.

3. Enter the name of the new object.

Remember that all Repository objects in the customer namespace must begin with Y or
Z.

4. Choose Continue.

The system checks whether there is already an object with the same name in the
system.

5. Enter the required object details and choose Save.

The Create Object Directory Entry dialog box appears.

6. Assign a development class to the object.

7. Choose to confirm your entries.

To create a new development object where the object node does not yet exist in the object list:

1. Choose Other object ().

2. In the Object Selection dialog box, choose the appropriate object type.

3. Enter the name of the object you want to create.

Note that all Repository objects in the customer namespace must begin with Y or Z.

4. Choose .

The system checks whether there is already an object with the same name in the
system.

5. Enter the required object details and choose Save.

The Create Object Directory Entry dialog box appears.

6. Assign a development class to the object.

7. Choose to confirm your entries.

BC ABAP Workbench Tools SAP AG

Creating New Objects

28 April 2001

Result
The system creates the object in the R/3 Repository in an inactive version. When you assign it to
a development class, it is automatically linked to the transport and correction system.

You can also create development objects from the initial screen of the corresponding
tool.

See also:
Example: Creating a Program [Page 103]

 SAP AG BC ABAP Workbench Tools

Creating a Program

April 2001 29

Creating a Program
Prerequisites
This description assumes that you are creating your new ABAP program in the Object Navigator.
It is also based on the most general case, and you can use it even if there is not yet a Programs
node in your object list.
You can also use the Create function from the context menu of the object node. See also
Creating New Objects [Page 27].

Procedure
1. Choose (Other object).

In the Object Selection dialog box, chose Program.

2. Enter the name of the new program.

Remember that all programs in the customer namespace must begin with Y or Z.

3. Choose .

The Create Program dialog box appears.

4. If you want your program to be an executable program, deselect the With TOP include
option. If, on the other hand, you want to create a module pool, select the option.

5. Choose to confirm your entries.

6. If you created a program with a TOP include, a dialog box appears in which you have to
enter the name of the include.

7. Choose to confirm your entries.

Another dialog box appears in which you must set other program attributes.

For details of what each attribute means, refer to Maintaining Program Attributes [Ext.].

8. Enter the program attributes and choose Save.

The Create Object Catalog Entry dialog box appears.

Assign a development class to the program.

9. Choose to confirm your entries.

BC ABAP Workbench Tools SAP AG

Creating a Program

30 April 2001

The program is added to the object list of the relevant development class and displayed
under the Programs object node. The system starts the ABAP Editor and opens the
program in change mode.

Result
The program has been created in the R/3 Repository, and its inactive version is displayed in the
ABAP Editor. You have assigned a development class, and it is thus attached to the transport
and correction system.

You can also create programs from the initial screen of the ABAP Editor (SE38).

 SAP AG BC ABAP Workbench Tools

Copying Objects

April 2001 31

Copying Objects
You may be able to simplify the process of creating new objects by copying existing programs or
their components.

When you copy a program, the system uses the active version of the source object.
Only in the case of function groups and function modules does the system ask
whether you want to use the active or the inactive version.

Prerequisites
If the source object contains components, decide which of the components you want to copy.

Procedure
1. Select the desired object.

2. Choose Copy from the context menu.

3. Specify a name for the target object.

4. Choose Copy.

A dialog box appears in which you can enter further components.

5. Select the components that you want to copy.

If you want to copy a program’s includes, another dialog box appears in which you can
select the includes individually and assign them new names.

6. Choose Copy again.

7. Assign a development class to your object.

You do not have to do this with local objects.

8. Choose to confirm.

Result
The new object is created in the R/3 Repository and its inactive version is included in the object
list.

BC ABAP Workbench Tools SAP AG

Copying Objects

32 April 2001

 SAP AG BC ABAP Workbench Tools

Deleting Objects

April 2001 33

Deleting Objects
Prerequisites
You can only delete development objects if they are not used by other objects. To find out if they
are still in use, use the where-used list function.

Procedure
To delete an object from the object list:

9. Select the object.

10. Choose Delete from the context menu.

11. Confirm the action by choosing Delete.

12. Enter a transport request, and confirm by choosing .

If you want to delete several objects from a single object list, select them by holding
down the CTRL or SHIFT key and clicking the objects, then follow steps 2 – 4 as
described above. You will need to repeat step 3 for each individual object. See also
Using Set Mode [Page 36].

Result
Both the active and inactive versions of the object or objects are deleted.

BC ABAP Workbench Tools SAP AG

Assigning an Object to a Different Development Class

34 April 2001

Assigning an Object to a Different Development Class

Use
You can reassign objects from one development class to another. This allows you, for example,
to create and test a program in your own private objects (development class $TMP) and then
assign it to another development class to transport it.

Procedure
1. Select the required object in the object list.

2. Choose Other functions � Change development class from the context menu (right-
click).

The Reassign Object dialog box appears.

3. Enter the name of the new development class.

4. Choose to confirm.

If the object was not already assigned to a change request, you must enter one now.

5. Enter a valid change request and choose .

Result
The system assigns the object to the change request and moves it to the new development
class.

You can reassign more than one object from the same object list by selecting them
and using set mode [Page 36]. The system then reassigns all of the selected objects
in a single operation.

 SAP AG BC ABAP Workbench Tools

Activating Objects

April 2001 35

Activating Objects
Use
You can activate either your entire worklist, selected objects, or just components of one object
(classes in ABAP Objects).

Prerequisites
Before activating an object, the system checks the syntax of the entire object (main program,
function group, or class). Any syntax errors are displayed in a list. However, it is still possible to
activate objects even if they contain errors. This can be useful if you want to create templates for
coding generators.

Procedure
1. Select the relevant object in the object list.

2. Choose Activate from the context menu or the icon.
Your worklist appears. The selected object is highlighted.

3. Choose to confirm your selection.
If you are activating an include that cannot be assigned to a single main program, the system
asks you for a main program. Choose one main program from the list of programs that use
the include.
A message in the status bar informs you that the object has been successfully activated.

Result
When you activate an object, its syntax is checked. The check uses the inactive versions of the
components selected for activation, but the active versions of all other components.
The inactive versions are used to create active versions of the objects. A new runtime version is
then generated. Finally, the inactive version is deleted and removed from the list of inactive
objects.

Special Features
When you activate an entire object from the object list, only the inactive objects belonging to that
object are displayed in the worklist. However, you can display all of your inactive objects by
choosing All inactive objects.

BC ABAP Workbench Tools SAP AG

Using Set Mode

36 April 2001

Using Set Mode
Use
In the Object Navigator, there are certain functions that you can apply to a set of development
objects in a single operation:

� Delete

� Display

� Change

� Print

� Write to transport request

� Change development class

Procedure
To apply a function to a set of objects in the Object Navigator:

1. Select a group of objects from an object list (by holding down the CTRL or SHIFT key and
clicking the required entries in the tree).

2. Display the context menu (right-click) and choose the required operation.

If you choose Display or Change, the system places the selected entries in your
worklist. The worklist remains available to you until the next time you log off.

3. Carry on processing the objects as normal for the operation you chose.

See also:
Deleting Objects [Page 33]

Assigning a New Development Class [Page 34]

Worklist [Page 45]

 SAP AG BC ABAP Workbench Tools

Navigation

April 2001 37

Navigation
Separation of Navigation and Tool Areas
You can navigate separately in the navigation and tool areas. When you navigate in one area,
the other is not automatically updated.

For example, suppose you choose an include from an object list. This is displayed in the ABAP
Editor. If you then double-click the name of a global class referenced in the include, the system
starts the Class Builder and displays the relevant class there. The navigation area, however, still
shows the object list from the program to which the include belongs.
Similarly, if you choose a different object list, there is no automatic adjustment in the tool area.

See also:
Navigation Areas in the Object Navigator [Page 38]

Navigating in the Tool Area [Page 41]

BC ABAP Workbench Tools SAP AG

Navigation Areas

38 April 2001

Navigation Areas
There are three independent navigation areas in the Object Navigator:

� Navigation in the object list

� Navigation in the tools

� Navigation in an additional window

- Integrated window in the Object Navigator (Syntax check, navigation stack, worklist...)

- Separate window (for example, when you open an object in a new session).

Object list Tool

Menu
Standard toolbar

Application toolbar

 Additional window

Functions of the Tools
The menu, standard toolbar, and application toolbar (apart from Exit) apply to the work area.
In particular, the Back function in the standard toolbar only applies to the tool work area.

Synchronizing the Object List
When you navigate to a new object (possibly to different tool as well), you can synchronize the
object list.
All of the tools integrated in the tool area of the Object Navigator contain a function that updates
the object list.
To do this, choose Display object list ().

 SAP AG BC ABAP Workbench Tools

Navigation Areas

April 2001 39

Suppose you are editing a program in the ABAP Editor and double-click the
name of a global class. The system displays the class definition in the Class
Builder. If you then update the object list, the object list for the global class (with
all of its components) appears.

Hiding the Object List
For further information, refer to Hiding the Navigation Area [Page 40].

See also:
Functions in the Navigation Area [Page 42]

BC ABAP Workbench Tools SAP AG

Hiding the Navigation Area

40 April 2001

Hiding the Navigation Area
Use
The Fullscreen on/off function in the Object Navigator allows you to hide the navigation area to
make the tool area larger. This can be particulary useful if you have a small screen.

Procedure
Choose from the application toolbar to switch to the fullscreen display.

(If you click the same icon again, the navigation area is displayed again).

Switch fullscreen onSwitch fullscreen off

Object Navigator Object Navigator
Fullscreen on/off Fullscreen on/off

See also:
Navigation Areas [Page 38]

 SAP AG BC ABAP Workbench Tools

Navigating in the Tool Area

April 2001 41

Navigating in the Tool Area
There is a series of navigation functions that you can use for the tool area:

Single step navigation (previous object and next object)
You can navigate separately in the navigation and tool areas of the Object Navigator. Navigation
in one area does not automatically update the other.

The previous object and Next object functions allows you to navigate forwards and
backwards in the tools. You can access the functions from the application toolbar and the
navigation stack. They are useful for switching quickly between two navigation targets in a stack.

Displaying Lists of Navigation Targets
Navigation Stack [Page 43]

Worklist [Page 45]

Finding Out the Navigation Context
Navigation Context [Page 44]

Forward Navigation in the Tools
Navigation by Double-Click [Page 108]

BC ABAP Workbench Tools SAP AG

Object List Functions

42 April 2001

Object List Functions
The object list tree display contains special navigation functions that are arranged in a separate
toolbar. They allow you to switch quickly between navigation targets and between hierarchy
levels in the object list. There is also a favorites list.

Function Icon Description

Previous object list Navigates back one step in the object list display with
history.

Next object list Navigates forward one step in the object list display with
history

Expand all nodes Expands the object list display fully

Collapse all nodes Collapses the object list display fully

Higher-level object list in
hierarchy

Displays the next-highest object list in the hierarchy. For
example, navigating upwards from the object list of a
program displays the development class to which the
program belongs.

Favorites Allows you to maintain a favorites list. You can include the
current object list in your favorites directly. You can also
edit your existing favorites.

Refresh object list Displays the current object list (including changes). This
allows you to update the list. If you are editing in the same
session as the object list display, the system refreshes the
list automatically.

Close Closes the navigation area. The tool area then occupies
the whole screen.

Including an Object List in the Favorites
1. Display the relevant object list in the navigation area.

2. Choose Favorites

3. Choose Add.
The system confirms that the object list has been added to your favorites (as long as it was
not already in the list).

 SAP AG BC ABAP Workbench Tools

Navigation Stack

April 2001 43

Navigation Stack
All of the navigation steps that you make in an Object Navigator session are automatically
recorded by the system on a navigation stack. You can use this stack to return to particular
navigation targets within the same session.

You can display the stack in a separate window. This allows you a constant overview of where
you are and what you have done during your work.

Choosing an Object from the Navigation Stack
Choose from the application toolbar in the Object Navigator to display the navigation stack.
The system displays a list with the navigation steps in a separate window area.

As well as the single-step operations Previous object and Next object, you can choose any entry
by double-clicking it to return to the corresponding object or component. This allows you to skip
several steps in the stack to reach the target you want.

The navigation stack is not stored permanently, and is deleted when you leave the
Object Navigator. Furthermore, there is a separate navigation stack for each internal
session.

BC ABAP Workbench Tools SAP AG

Navigation Context

44 April 2001

Navigation Context
When you navigate between development objects, the navigation context is retained, as long as
you are switching between components of the same global class, program, or function group.
The effects of this are best illustrated in an example.

Suppose we have a method (already implemented) M1 of a global class that we
select from the object list by double-clicking. The system starts the ABAP Editor and
displays the method in display mode. If we then call another method M2 of the same
class, it is also opened in display mode. Suppose we then switch to change mode
and open a third method M3 – its definition will also be displayed in change mode.

Change

 Object list Method editor: Display Method editor: Change

Open

Open

Open

M1

M2

M3

 SAP AG BC ABAP Workbench Tools

Worklist

April 2001 45

Worklist
You can put together a list of navigation targets that you want to use by placing them in a
worklist.
A worklist is a user-specific list of objects. You must fill it yourself.
From Release 4.6C, you can save your worklist and return to it in a later terminal session.

Suppose, for example, you use the Repository Information System to search for an object. You
might then place it in your worklist so that you can return to it later to copy a section into your
own program.

You can also use the worklist to set markers in the Editor. For further details, refer to
Setting Markers [Page 47].

Adding Objects to Your Worklist
You can fill your worklist as follows:

� By adding the object on which you are currently working

Open the required object in the appropriate tool and choose Utilities � Worklist � Add
current object.

� By choosing Display or Change in set mode

Select a set of objects from the object list, display the context menu (right-click) and
choose Display or Change. See also Using Set Mode [Page 36].

� By dragging and dropping the object from the object list

Display the worklist (Utilities � Worklist � Display).

Select one or more objects or components from the object list and drag them from the list
to the worklist.

Saving the Worklist
1. If the worklist is not currently displayed, choose Utilities � Worklist � Display.

The worklist appears in a separate dialog box.

2. Check that you want to keep all of the entries in your persistent worklist.

3. Choose the Save icon to save the worklist.

BC ABAP Workbench Tools SAP AG

Worklist

46 April 2001

You can now return to the worklist in a subsequent terminal session.

Entries in your worklist that are global classes or methods of global classes, function
modules, or subroutines can be used to insert source code segments into your
programs using drag and drop. For further information, refer to Inserting Patterns
Using Drag and Drop [Page 125].

 SAP AG BC ABAP Workbench Tools

Setting Markers

April 2001 47

Setting Markers
Use
There are no implicit markers in the ABAP Editor. However, you can set explicit markers to allow
you to navigate to a particular line within a program or to a different program altogether. To do
this, you just need to include the relevant line in your worklist.

Procedure
Creating a Marker:
1. Position the cursor on the required line in the source code.

2. Choose Utilities � Worklist � Include current object.

Navigating to a Marker:

4. Choose Utilities � Worklist � Display.

The worklist appears in a separate window.

5. Double-click the required entry.

The source code appears in the Editor, with the cursor positioned on the line at which the
marker is defined.

You can also save markers. For further information, refer to the "Saving Entries in
the Worklist" section under Worklists [Page 45].

BC ABAP Workbench Tools SAP AG

User-Specific Settings

48 April 2001

User-Specific Settings
You can preset many of the user-specific settings for the different tools in the ABAP Workbench.
These are arranged in a tab that you can call from any of the tools.

Displaying the Settings
You can display your personal ABAP Workbench settings from the Object Navigator or any other
tool in the ABAP Workbench. Choose Utilities � Settings.

ABAP Workbench Tools Settings

Tool Setting Description

Display background
picture

If you set this option, a background picture is
displayed in the Object Navigator.
This setting has no effect in a WAN.

Workbench
(general)

No picture If you set this option, the picture is never displayed

Frontend editor Enables the textedit control mode in the ABAP Editor.
When you work in this mode, the source code of your
program is loaded at the frontend and can be edited
locally. See also Frontend Editor [Page 94]

Backend editor The conventional line-based backend editor.
See also: Backend Editor [Page 97]

Numbering The With and Without line numbering options only
apply to table control mode.

Compression In table control mode, you can use the With
compression logic option to compress logical blocks of
ABAP coding. This provides a readable display of
complex ABAP programs. For further information, refer
to Using Compression Logic [Page 110].

Path for local editing Determines the path for local editing.
This is the path to which the program is downloaded or
stored temporarily, or under which it is started in a
local editor.
This option only applies to table control mode.

ABAP Editor

Upper-/lowercase
conversion in display
mode

Setting this flag only applies to display mode. The
conversion then applies each time you display source
code. The display form is based on the settings you
make in the Pretty Printer under the Convert
upper/lowercase option. The Keyword uppercase
option is not supported for performance reasons.

If this flag is not set, there is no special formatting in
display mode. In this case, the display is the same in
both change and display modes. The source code is
displayed exactly as it is stored in the database.

 SAP AG BC ABAP Workbench Tools

User-Specific Settings

April 2001 49

Indent Indents lines in the ABAP source code. For example,
all statements belonging to an event are indented by
two characters.
See also: Improving the Layout [Page 129].

Pretty Printer

Convert upper-
/lowercase

Option allowing you to standardize the source code
display.

� Lowercase (for the entire program apart from
literals and comments).

� Uppercase (for the entire program apart from
literals and comments).

� Keyword uppercase (highlights ABAP keywords).

Note that the Keyword uppercase option can be very
runtime-intensive in long programs.

Window
arrangement

You can arrange the programs either next to each
other or one above the other in the splitscreen editor.

Splitscreen

Comparison
operations

If you choose Ignore indentations, the system
recognizes program lines as identical as long as they
have the same contents, even if they are indented
differently.
If you choose Ignore comments, the system
recognizes program lines as identical as long as they
have the same contents apart from comments
appended using <">.
The Ignore upper-/lowercase setting is initial.

For further information, refer to Special Splitscreen
Functions [Page 199].

Display filter Options for displaying the components of global
classes or interfaces in the Class Builder. They allow
you to extend or restrict the standard display.

Class Builder

Scope Filter Restricts the display of class components to instance
or static components.

Screen Painter Graphical layout
editor

If you set this option, the system uses the graphical
layout editor in the Screen Painter. If the option is not
set, the alphanumeric editor is used instead.

BC ABAP Workbench Tools SAP AG

User-Specific Settings

50 April 2001

Output length in
status maintenance

Function code option: The length of the function code
field in the Menu Painter can be set to between 4 and
20 characters.
If the function code you want to enter is longer than
the length specified in this option, the field cannot
accept input beyond its defined length.

Text length option: The length of the text field for a
function text in the Menu Painter can be set to
between 10 and 40 characters. If the text you want to
enter is longer than the length specified in this option,
the field cannot accept input beyond its defined length.

Note that these user-defined settings are only valid in
the status maintenance screen of the Menu Painter.

Menu Painter

Frontend platform Frontend option: The function key settings depend on
the platform you are using. All function codes
maintained in the Menu Painter are platform-
independent, but the function key names are not. By
selecting a platform, you ensure that the function keys
are labeled using the convention of the selected
platform.

Function
Builder

Check syntax in test When you test a function module, the system can
check the syntax of the function group to which the
function module belongs.
The default setting for this option is inactive to improve
performance in the Function Builder test environment.

 SAP AG BC ABAP Workbench Tools

Integrating Internet Services

April 2001 51

Integrating Internet Services
As part of the mySAP.com initiative, SAP has started to integrate Internet services in the ABAP
Workbench in Release 4.6C. This means that it is now possible to create Web objects as
Repository objects and publish them on an Internet Transaction Server (ITS).

Contents
Web Application Builder [Page 52]

Creating an Internet Service [Page 53]

Creating HTML Templates [Page 58]

Extending HTML Templates [Page 62]

Adding MIME Objects [Page 64]

Creating Language Resources [Page 66]

Publishing a Service [Page 68]

Running a Service [Page 69]

User Settings for Internet Services [Page 72]

Further Documentation
The HTMLbusiness Language [Ext.]

Developing Internet Applications With the SAP Web Studio [Ext.]

BC ABAP Workbench Tools SAP AG

Web Application Builder

52 April 2001

Web Application Builder
Purpose
The Web Application Builder allows you to create Web development objects within the ABAP
Workbench. Existing R/3 transactions requre these objects to allow them to run as Web
transactions in a Web Browser. You can also use the Web Application Builder as an integrated
environment for creating MiniApps.

Integration
The Web Application Builder is a fully integrated tool within the ABAP Workbench. Objects that
you create with it, such as service files, HTML templates, and MIME objects, are stored in the
R/3 Repository and are connected to the R/3 Change and Transport System.

Features
� Creating Internet services for existing R/3 transactions or MiniApps.

� Implementing the dialog logic.

� Generating the HTML templates for the screens of a transaction. These contain standard
HTML and HTMLBusiness statements that map the screen layout.

� Editing the generated HTML templates using HTML and HTMLBusiness to develop them further.

� Including MIME objects (icons, graphics, Java applets, animation...) to improve the layout
further.

� Creating language-specific texts (language resources).

� Publishing the services or individual service ocmponents on the Internet Transaction Server
(ITS)

� Executing the complete Web transaction from the ABAP Workbench.

� Connection to the Change and Transport System (CTS).

� Connection to Version Management.

Constraints
Certain functions are not yet available:

� There is no syntax check

� HTMLBusiness and the flow logic are not yet integrated with the Debugger.

 SAP AG BC ABAP Workbench Tools

Creating an Internet Service

April 2001 53

Creating an Internet Service
Use
In order for you to log onto the R/3 System and start a Web application, the Internet Transaction
Server requires a relevant Internet service.
Each service consists of a set of components:

� Service description: Parameters that describe how the service should be executed,
particularly logon data and details of the transaction that is to be executed.

� HTML templates: You can create an HTML template for each screen of an Easy Web
Transaction (EWT).

� Language resources: A language resource contains all the texts that are required to execute
a service in a particular languge. They ensure that the service is language-independent.

� MIME objects: These can be icons, graphics, Java applets, or sound/video components that
you use to extend the user interface in the Web environment.

A concrete instance of a service is defined by a theme. A theme has its own set of HTML
templates, language resources, and MIME objects, and gives a service a particular appearance.
The actual function of the service remains unchanged.

Prerequisites
If you want to create a service for an R/3 transaction, you should first check its classification and
change it if necessary. The default classification of a transaction is Professional User
Transaction.

Procedure
8. Start the Object Navigator (SE80).

9. In the object list selection, choose Internet Service.

10. Enter the name of the service you want to create.

Note that all Repository objects in the customer namespace begin with Y or Z.

11. Choose or ENTER.

The system checks whether there is already a service with the same name in the
system. If there is not, the Create Object dialog box appears.

12. Confirm the creation by choosing Yes.

The Create Service dialog box appears.

13. If your Web application is a Web transaction, enter the transaction code of the corresponding
R/3 transaction.

If you only want to generate HTML templates for some of the screens in the R/3
tranaction, select the ITS mixed mode option.
For further information, refer to Using Mixed Mode [Page 57].

BC ABAP Workbench Tools SAP AG

Creating an Internet Service

56 April 2001

1. Choose .

The Create Object Catalog Entry dialog box appears.

2. Assign the service to a development class.

Result
The Internet service has now been created as a development object in the R/3 Repository, and
appears in the object list. The service has been assigned the theme 99, which is the current
theme.
If you entered an R/3 Transaction in step 6, the parameter ~TRANSACTION will have been
generated for the service. if you set the ITS mixed mode flag, the corresponding parameters will
have been filled with appropriate values.

See also:
Using Mixed Mode [Page 57

Generating HTML Tempaltes [Page 58

Publishing a Web Application [Page 68]

 SAP AG BC ABAP Workbench Tools

 Creating an Internet Service

April 2001 55

BC ABAP Workbench Tools SAP AG

Creating an Internet Service

56 April 2001

 SAP AG BC ABAP Workbench Tools

Using Mixed Mode

April 2001 57

Using Mixed Mode
Use
Mixed mode allows you to use both templates and the automatic WebGUI generation within one
Web transaction. Screens that do not have templates are generated automatically by the
WebGUI.
If a template exists for a screen, the ITS will use it and use HTMLBusiness functions to generate an
HTML document for the screen before sending it to the Web browser.

Mixed mode allows you to create templates for selected screens within a transaction. This is
particularly useful if particular screens or transactions cannot be reproduced in the WebGUI
without errors, or where the layout is inappropriate to your requirements. You can improve the
layout of the screens by hand.

Prerequisites
To enable screens to be generated by the WebGUI mechanism, you need to add certain
parameters to the Internet Service. The automatic generation is not supported by default for
compatibility reasons.

If you did not set the ITS mixed mode flag when you created the service, add the following
parameters and values manually. In other cases, they are generated automatically when you
create the service and filled with valid values.

Parameter Value Description

~generateDynpro 1 Switches on the automatic generation mode for screens that
have no template

~listscrolling 0 Simulation of downward scrolling in list reports

~popups 1 Displays dialog boxes instead of suppressing them

~style DHTML Specifies which generator should be used

~autoscroll 0 Simulates downward scrolling for step loops and table controls

BC ABAP Workbench Tools SAP AG

Creating HTML Templates

58 April 2001

Creating HTML Templates
Use
When you implement a MiniApp, you must create HTML templates. The dialog logic of a MiniApp
runs on the ITS, not in R/3.

For each transaction, you can choose whether you want to generated HTML templates for all
screens, for some screens (mixed mode [Page 57]), or at all. Templates that you create explicitly
are identical to the HTML documents that are generated automatically by the WebGUI.

Generating templates explicitly is useful if the WebGUI features are insufficient for your needs
and you would need to adapt the standard generated template anyway. This will particularly be
the case if you are trying to improve the layout of a screen or if you want to include hyperlinks.

Standard template generation from the WebGUI should be sufficient for most
transactions. The WebGUI can display the screen elements of a simple transaction
(text fields, input/output fields, checkboxes, radio buttons, tabstrip controls, table
contorls, subscreens...) without you having to go to the effort of creating a template.

Prerequisites
� You must already have created the service.

� You have sufficient knowledge of HTML and HTMLBusiness to take advantage of the template-
based approach.

Procedure
To create an HTML template from the tree display in the object list:

8. Right-click the name of the service.

9. From the context menu, choose Create � Template.

The Create Template dialog box appears.

10. Enter the theme for the service and fill out the remaining fields.

If the Web application is a Web transaction and you want to generate a template for a
particular screen, select Generate HTML from screen and enter the program name and
screen number.

If the application has no corresponding R/3 screen (MiniApps), select Name of template
and enter the name.

 SAP AG BC ABAP Workbench Tools

 Creating HTML Templates

April 2001 61

1. Confirm by choosing Save.

The Create Object Catalog Entry dialog box appears.

2. Assign the template to a development class and choose .

Result
The generated template appears in the object list under Templates. The generated contents of
the tempalte are displayed in the Editor. Only the static screen information is evaluated - an
HTMLBusiness function is inserted in the template for each screen element. These are highlighted in
blue. You can now change the contents of the template using standard HTML and HTMLBusiness.

BC ABAP Workbench Tools SAP AG

Creating HTML Templates

60 April 2001

See also:
Extending HTML Templates [Page 62]

Adding MIME Objects [Page 64]

Publishing Services [Page 68]

 SAP AG BC ABAP Workbench Tools

 Creating HTML Templates

April 2001 61

BC ABAP Workbench Tools SAP AG

Extending HTML Templates

62 April 2001

Extending HTML Templates
Once you have created an HTML template, you can change the generated source code.

To do this, you must be familiar with the basics of HTML and HTMLBusiness.

HTMLBusiness is an extension of standard HTML developed by SAP to allow R/3
screen data to be merged dynamically with information on HTML templates and to
make it easier for the ITS to exchange data between the R/3 System and the Web
Server.

For further information, refer to HTMLBusiness Reference [Ext.].

Example
This example sets a hyperlink to a particular position on an HTML page:

See also:

 SAP AG BC ABAP Workbench Tools

Extending HTML Templates

April 2001 63

Publishing a Service [Page 68]

Adding MIME Objects [Page 64]

BC ABAP Workbench Tools SAP AG

Adding MIME Objects

64 April 2001

Adding MIME Objects
Use
You can use MIME objects (icons, graphics, audio files, animations...) to improve the layout of
your Web applications.

Prerequisites
You must already have created an Internet service.

Procedure
To add a MIME object to an Internet service from the object list:

13. Right-click the relevant service.

14. In the context menu, choose Create � Mime.

The Read from Local File dialog box appears:

15. Enter the path name of the file you want to import, and ensure that the file format is correct.

16. Choose Import.

The Create Mime dialog box appears.

17. Enter the theme and the name for the MIME object.

18. In the Name field, you can create a subdirectory, separated from the name of the MIME
object by a forward slash ("/").

 SAP AG BC ABAP Workbench Tools

Adding MIME Objects

April 2001 65

19. Choose to continue.

The Create Object Catalog Entry dialog box appears.

20. Assign the MIME object to a development class and choose .

Result
The MIME object has been inserted in the R/3 Repository as a standalone object. It appears
under Mimes in the object list display, and, if it is a graphic, its contents are displayed.

You can now use this object in your interface design.

When you publish the service, the MIME objects are not stored in an ITS directory.
Instead, they are stored on the HTTP server under the name and subdirectory you
specified in step 5 above.

See also:
Publishing Web Applications [Page 68]

BC ABAP Workbench Tools SAP AG

Creating Language Resources

66 April 2001

Creating Language Resources
Use
A language resource contains all of the language-specific elements of an Internet service and
enables you to make your application multilingual. Compared with hard-coded text in the HTML
template, it also makes it easier for you to understand and maintain your source code.

For each language-specific text in your Web interface, you insert a placeholder into the HTML
template (similarly to text elements in an ABAP program). The actual texts are maintained
through the theme parameters with the same name. At runtime, the ITS recognizes the
placeholders for each template and replaces them with texts in the appropriate language.

Prerequisites
You must already have created the HTML templates for your Internet service.

Procedure
Adding Placeholders to an HTML Template
1. Open the relevant template.

2. Enter the placeholder for the language-specific texts in the HTML source code.

Use the following syntax: `#Placeholder`

Suppose we defined three placeholders (`#windowtitle`, `#text001` und
`#action`) in the source code.

Entering Language-Specific Texts
1. Double-click the theme.

2. In the Parameter name column, enter the name of the placeholder (without #) and enter the
text in the original language as its Value.

 SAP AG BC ABAP Workbench Tools

Creating Language Resources

April 2001 67

Result
The theme parameters are now part of the service. They are translation-relevant parts of the R/3
Repository object, and as such will enter the translation workflow when you release the service.

When you start the service in the original language, the texts appear in the relevant language.

If there is no translation of the language-specific texts in the logon language, no text
is displayed when the user executes the service.

BC ABAP Workbench Tools SAP AG

Publishing a Service

68 April 2001

Publishing a Service
Use
In order for an Internet service to be executed by the ITS, it must be stored in the ITS file system.
This is known as publishing the service. You can choose to publish the entire service or just parts
of it. When you publish the whole service, the corresponding Internet service and its HTML
templates are placed in the file system of the AGate server, and the MIME objects are placed in
the file system of the WGate server.

Note that by default, the Internet service is published on all Internet Transaction
Servers. However, you can choose to restrict the publication to an ITS assigned to
your particular R/3 System. To do this, choose Utilities � Settings and then, under
ITS, enter the required server. For further information, refer to User Settings [Page
72].

Prerequisites
At least one ITS must have been assigned to the R/3 System, and it must be active.

Procedure
To publish an entire Internet service from the object list:

21. Right-click the relevant service.

22. Choose Publish � Entire service from the context menu.

If an error occurs while the system is publishing the service, a log is generated
containing the relevant message texts.

If no errors occur, the system displays the message The object has been published
successfully.

Result
Once you have published the entire service, you can start your Web application.

See also:
User Settings for Internet Services [Page 72]

Executing a Service [Page 69]

 SAP AG BC ABAP Workbench Tools

Executing a Service

April 2001 69

Executing a Service
Use
Use this function to test a Web transaction or MiniApp from the ABAP Workbench.

Prerequisites
You must already have published the entire service on the ITS. The ITS must be active.

Procedures
To start the Web application from the Object Navigator:

1. Select the relevant service.

2. Choose Execute.

The system starts the Web browser and displays a logon window.

3. Check the logon language, and log onto the ITS by choosing Logon.

4. Run the Web application.

You can suppress the logon window by specifiying a logon language in the
~LANGUAGE parameter.

Result
The service is started using the HTTP address http://<ITS>:<Port>/scripts/wgate/<service>/!

BC ABAP Workbench Tools SAP AG

Executing a Service

70 April 2001

The way in which a Web transaction is displayed depends on the classification of the
underlying R/3 transaction. Professional User Transactions are displayed with the
normal R/3 menus, command field, standard toolbar, and application toolbar in the
Web browser. Easy Web Transactions (EWTs), on the other hand, are displayed with
a special EWT header.

 SAP AG BC ABAP Workbench Tools

Executing a Service

April 2001 71

BC ABAP Workbench Tools SAP AG

User Settings for Internet Services

72 April 2001

User Settings for Internet Services
Use
You can use the ITS settings to

� Find out which ITS instances are assigned to your SAP System.

� Restrict the ITS instances on which services are published to a single instance.

� Find out the name of the default Web server for starting services.

� Specify a Web server other than the default for starting services.

Activities
To change the ITS settings:

1. Choose Utilities � Settings.

2. Under ITS, change the required filter settings.

3. Choose to confirm.

The new settings will apply to all subsequent service publications.

Filter settings

Setting Description

Default web server The name of the default web server used to start
services in the current SAP System.

This name is entered in the Customizing table
TWPURLSVR (transaction SM30).

If there is no entry for this setting, the name of
the web server has not yet been entered. In this
case, you should inform your system
adminstrator (unless you have authorization to
maintain the table yourself).

Web server
(Hostname)

for tests

Other ITS web
server

You can enter the name of any other web server
on which you want to run services.

Note, however, the assignment of the web server
to an SAP System. If you specify a web server
belonging to the ITS instance of a different SAP
System, the service will be started on a different
SAP System to the one from which it was
published.

 SAP AG BC ABAP Workbench Tools

 User Settings for Internet Services

April 2001 73

On all ITS instances The service is published on all ITS instances
assigned to the SAP System.

The message that follows successful publication
is only displayed if the service could be published
successfully on all ITS instances. Errors
occurring on any instance are logged.

Publish

on <individual
instances>

If you choose an ITS instance from the list box,
services will only be published on that instance.

The name of the ITS instance is derived from the
RFC destination details as maintained in
transaction SM30.

If the list box contains no entries, no destinations
have been created. To maintain destinations,
start transaction SM30, enter the view
IACORDES and create the RFC destination.
If you do not have authorization for this, inform
your system administrator.

BC ABAP Workbench Tools SAP AG

User Settings for Internet Services

74 April 2001

 SAP AG BC ABAP Workbench Tools

Documentation Not Available in Release 4.6C

April 2001 75

Documentation Not Available in Release 4.6C

BC ABAP Workbench Tools SAP AG

Documentation Not Available in Release 4.6C

76 April 2001

Documentation Not Available in Release 4.6C

 SAP AG BC ABAP Workbench Tools

Documentation Not Available in Release 4.6C

April 2001 77

Documentation Not Available in Release 4.6C

BC ABAP Workbench Tools SAP AG

Documentation Not Available in Release 4.6C

78 April 2001

Documentation Not Available in Release 4.6C

 SAP AG BC ABAP Workbench Tools

Documentation Not Available in Release 4.6C

April 2001 79

Documentation Not Available in Release 4.6C

BC ABAP Workbench Tools SAP AG

Documentation Not Available in Release 4.6C

80 April 2001

Documentation Not Available in Release 4.6C

 SAP AG BC ABAP Workbench Tools

Documentation Not Available in Release 4.6C

April 2001 81

Documentation Not Available in Release 4.6C

BC ABAP Workbench Tools SAP AG

Documentation Not Available in Release 4.6C

82 April 2001

Documentation Not Available in Release 4.6C

 SAP AG BC ABAP Workbench Tools

Documentation Not Available in Release 4.6C

April 2001 83

Documentation Not Available in Release 4.6C

BC ABAP Workbench Tools SAP AG

ABAP Workbench: Tools

84 April 2001

ABAP Workbench: Tools
Overview and Navigation
Object Navigator [Page 20]

ABAP Workbench Overview [Page 86]

Information About Repository Objects [Page 496]

Developing Web Objects
Web Application Builder [Page 52]

ABAP Development
ABAP Dictionary [Ext.]

ABAP Editor [Page 92]

Class Builder [Page 202]

Function Builder [Page 408]

Screen Painter [Page 262]

Menu Painter [Page 353]

Context Builder [Ext.]

Programming Environment
Text Element Maintenance [Page 140]

Variant Maintenance [Page 167]

Splitscreen Editor [Page 195]

Maintaining Message Classes [Page 190]

Test Tools in the ABAP Workbench
ABAP Debugger [Page 444]

Runtime Analysis [Page 447]

Performance Trace [Page 449]

Other Tools
Area Menu Maintenance (From Release 4.6A) [Page 396]

Transaction Maintenance [Ext.]

Modifications

 SAP AG BC ABAP Workbench Tools

ABAP Workbench: Tools

April 2001 85

Modification Assistant [Ext.]
See also:

Further Reading: ABAP Programming [Page 91]

BC ABAP Workbench Tools SAP AG

Overview of the Workbench

86 April 2001

Overview of the Workbench
This section introduces you to the ABAP Workbench and the concepts you need to know before
you start to use the Workbench.

Topics:
Tool Integration and Working Methods [Page 87]

Development Objects and Development Classes [Page 88]

Team Development [Page 89]

Further Reading [Page 91]

 SAP AG BC ABAP Workbench Tools

Tool Integration and Working Methods

April 2001 87

Tool Integration and Working Methods
The tools in the Workbench are integrated. For example, when you are working on a program,
the ABAP Editor will also recognize objects created using other tools. This integration also
means if you double-click an object to select it, the Workbench automatically launches the tool
that was used to create the object.

SAP has developed the Object Navigator to help you to organize your application development in
this integrated environment. It provides a context that makes it easier for you to trace the
relationships between objects in a program. Rather than working with tools and recalling
development objects, you work with objects and allow the Workbench to launch the appropriate
tool for an object.

We recommend that you use the Object Navigator to develop your applications. For this reason,
this documentation is written from the perspective of an Object Navigator user.

See also:
Development Objects and Development Classes [Page 88]

Object Navigator [Page 20]

BC ABAP Workbench Tools SAP AG

Development Objects and Development Classes

88 April 2001

Development Objects and Development Classes
When you work with the Workbench, you work with development objects and development
classes.

Development objects are the individual parts of an ABAP application. Some examples of
development objects are programs like reports, transactions, and function modules. Program
components such as events, screens, menus, and function modules are also development
objects. Finally, objects that programs can share are development objects as well. These
shareable objects include database fields, field definitions, and program messages.

A development class is a container for objects that logically belong together; for example, all of
the objects in an application. A development class is also a type of development object. An
example of a development class might be General Ledger Accounting.

When you create a new object or change an existing object, the system asks you to assign the
object to a development class.

Storage of Development Objects
The SAP system stores development objects in the R/3 Repository, which is a part of the
database.

When you complete work on a development object like a program, screen, or menu, you
generate a runtime version of the object. This runtime version is stored, along with the object, in
the Repository. An application consists of several runtime objects that are processed by the work
processes in the R/3 System.

In a standard SAP installation, development and live operation take place in separate systems.
New applications are created in the development system and transported to the production
system. Daily work takes place in the production system which uses run-time versions created in
the development system.

The division between production and development systems is recommended because changes
to an existing ABAP application take immediate effect. To prevent disturbances in daily work flow
in the production system, all developments are carried out in development systems designed
especially for this purpose.

The Workbench Organizer
You use the Workbench Organizer and the transportation system to move applications from the
development system to the production system. The Workbench Organizer also provides version
control and tracking. When you work with the Workbench, you will encounter safeguards
provided by the Workbench Organizer. A brief overview of these checks and how they affect the
development process is provided in Development in a Team Environment [Page 89].

For further details, see the Workbench Organizer [Ext.] documentation.

 SAP AG BC ABAP Workbench Tools

Development in a Team Environment

April 2001 89

Development in a Team Environment
ABAP allows you to divide work on large projects among several programmers. Consider an
accounting application project with an accounts payable module and an accounts receivable
module. The ABAP environment helps you to create a work area in the system for the project.
You can then assign tasks to each programmer and follow their work as it progresses.

The tool you use for tracking development projects is called the Workbench Organizer. The
Organizer tracks changes to existing SAP development objects and the creation of new objects.
If you create a new object, the Organizer asks you for a development class when you try to Save
the object:

The Organizer uses the development class to determine whether a change request is required. A
change request records the changes made to one or more development objects. The $TMP
development class contains local objects. Local objects are not transported and so the Organizer
does not monitor them.

If you specify a non-local development class, the system prompts you to enter a change request.
The system also queries you for a change request the first time you attempt to change an
existing non-local object. The query dialog appears as follows:

BC ABAP Workbench Tools SAP AG

Development in a Team Environment

90 April 2001

When you associate a change with a request, the system creates a task for you under that
change request. The organizer creates a task for each programmer making a change under a
change request. You can think of a change request as a container of change tasks.

Once you associate an object with a change request, the system views the objects as under
development. The object is locked, and cannot be changed by other users. When you have
finished creating or changing an object, you release your task. To transport your changes to a
production system, you release the change request that held your task.

You can change the development class and change request associated with an object. For more
information about changing the development class of an object, refer to Reassigning Objects to
Another Development Class [Page 34] For more information about the Workbench Organizer
and the transport system, see the Workbench Organizer [Ext.] documentation.

 SAP AG BC ABAP Workbench Tools

Further Reading

April 2001 91

Further Reading
The following documentation contains more information about the ABAP Workbench and ABAP
programming:

� ABAP Workbench Tutorial [Ext.]. An introduction to the most important aspects of the
ABAP Workbench and simple ABAP programming.

� ABAP User’s Guide [Ext.]. A comprehensive guide to the individual parts of an ABAP
program. It contains information about both basic and advanced ABAP programming,
including the techniques of list and transaction processing.

� ABAP Dictionary [Ext.]. An introduction to ABAP data, covering basic and aggregated
objects, how to maintain ABAP Dictionary objects, and other special areas.

� Workbench Organizer [Ext.]. A guide to organizing large development projects in the R/3
System. It covers how to set up the Workbench Organizer and transport system, version
management, and the modification concept.

� Extended Function Library [Ext.]. Information about a range of standardized dialogs for
address management, application logs, and archiving.

� Basis Programming Interfaces [Ext.] A description of the programming interfaces for
SAP components, including background processing and batch input.

BC ABAP Workbench Tools SAP AG

ABAP Editor

92 April 2001

ABAP Editor
You use the ABAP Editor to create and edit your programs and their components.

If you want to use the ABAP Editor together with the Modification Assistant, read the
Modifications in programs [Ext.] documentation.

Topics in this Documentation
ABAP Editor Overview [Page 92]

Creating a Program [Page 103]

Editing Source Code [Page 111]

Checking a Program [Page 133]

Saving and Activating a Program [Page 132]

]

 SAP AG BC ABAP Workbench Tools

Introduction to the ABAP Editor

April 2001 93

Introduction to the ABAP Editor
The ABAP Editor is a tool that you use to write ABAP programs, class methods, function
modules, screen flow logic, type groups, and logical databases.

Editor Modes
The ABAP Editor has two different modes:

� Frontend editor

� Table control mode

The frontend editor uses the SAP Textedit Control from the SAP Control Framework. It loads
your source code onto the frontend and allows you to perform many tasks without any
communication with the application server.

Please note that command mode is no longer supported in the new version of the
ABAP Workbench and is therefore no longer available in Release 4.6B.

Integration
Table control mode and frontend editor are fully compatible and interchangeable – source code
that you have created using one mode is properly reproduced by the system in the other without
you having to do anything yourself. In particular, the line lengths are the same. If you exceed the
maximum length, the system automatically inserts a line break.

Both editor modes offer the same source code layout. The contents of the editor are displayed
exactly as they are stored in the database. There is no automatic conversion (for example, into
uppercase) in either mode.

Differences
There are differences between the two modes in respect of how they are used, the system
requirements, and (to a small extent) the functions that they contain. Other sections of this
documentation explain the differences in more detail.

See also:
The Frontend Editor [Page 94]

The Backend Editor [Page 101]

Changing the Editor Mode [Page 100]

Local Editing [Page 101]

BC ABAP Workbench Tools SAP AG

The Frontend Editor

94 April 2001

The Frontend Editor
Use
In the frontend editor, the ABAP source code is loaded onto the frontend and edited locally. The
advantage of this is that all editing functions that do not require communication with the backend
can be performed very quickly.

However, the communication channel between the frontend and backend can be overloaded
when you use the frontend editor. If you have a large program, this can be a problem even in a
LAN environment, but in a WAN, it can become critical.

You can edit the following development objects in the frontend editor:

� ABAP programs

� Method implementations (Class Builder)

� Function module implementations (Function Builder)

� Screen flow logic (Screen Painter)

� Type groups (ABAP Dictionary)

Edit control mode has the same range of features in each situation in which you can use it.

Edit control mode is not yet supported in the splitscreen editor, the BOR editor, or the
logical database editor.

Editing an ABAP program in edit control menu using the context menu:

 SAP AG BC ABAP Workbench Tools

 The Frontend Editor

April 2001 95

Prerequisites
Operating system
You must be using a 32 bit operating system (Windows NT 4.0 or Windows 95). Other operating
systems are not currently supported.

Controls and DLLs
Various DLL and OCX files are required at the frontend. They are installed and registered
automatically when you install the SAPgui.

BC ABAP Workbench Tools SAP AG

The Frontend Editor

96 April 2001

Features
The frontend editor of the ABAP Editor contains the following features:

� Local scrolling (only available in this mode)

� Cut, copy, and paste for selected text areas (only available in this mode)

� Drag and drop (only available in this mode)

� Context menu (right-click) for accessing editor functions (only available in this mode)

� Local find and replace function

� Navigation to a selected line (using the context menu)

� Access to the buffer and block operations (using the context menu)

� Commenting out text blocks

� Working with blocks and clipboards

� Navigation functions (forward navigation)

� Syntax check, displaying error messages and warnings in a separate window

� Colored highlighting for comment lines

� Automatic line feed when the maximum line width is reached (only available in this mode)

� Insert statement function.

� Multiple-step undo and redo functions (only available in this mode)

� Displays current cursor position

� Pretty Printer for standardizing the layout

� Import and export for local files.

 SAP AG BC ABAP Workbench Tools

Table Control Mode

April 2001 97

Table Control Mode
Use
The backend editor allows you to use the traditional backend editor for editing your ABAP coding.
The editor is line-based, and to use normal editor functions such as cut, copy, and paste, you
must first select a block of lines. It is often useful to use the clipboards in this mode.

If you have a very long program (and especially if you are working in a WAN environment), the
backend editor can produce better performance than the frontend editor. Furthermore, backend
editor allows you to edit any development object that is based on the ABAP Editor. The
splitscreen editor, the BOR Editor, and the Logical Database Editor are only available in the
backend editor.

Editing an ABAP program in the backend editor:

BC ABAP Workbench Tools SAP AG

Table Control Mode

98 April 2001

Prerequisites
Unlike the frontend editor, there are no operating system restrictions for the backend editor.

Features
The backend editor of the ABAP Editor provides the following functions:

 SAP AG BC ABAP Workbench Tools

Table Control Mode

April 2001 99

� Compression logic (only available in this mode).

� Line numbering (only available in this mode).

� Find and replace functions.

� Colored highlighting for comment lines.

� Insert statement function.

� Include expansion (only available in this mode).

� Single-step undo function.

� Conversion of a text block to comment lines.

� Pretty printer for standardizing program layout.

� Syntax check.

� Upload and download of local files.

BC ABAP Workbench Tools SAP AG

Changing the Editor Mode

100 April 2001

Changing the Editor Mode
When you start the ABAP Editor, the system displays the source code in the editor mode saved
in your user-specific settings [Page 48].

Procedure
To change the Editor mode from anywhere in the ABAP Workbench:

1. Choose Utilities � Settings .

The User-Specific Settings dialog box appears.

2. Choose ABAP Editor.

3. Set the new editor mode.

4. If you are going to use Table control mode, you can choose whether to switch the Line
numbering and Compression logic on or off.

5. Choose to leave the dialog box.

Result
The changed settings are saved, and will be retained even after you log off from the SAP
System.

See also:
Using Compression Logic [Page 110]

 SAP AG BC ABAP Workbench Tools

Local Editing

April 2001 101

Local Editing
Both modes in the ABAP Editor allow you to transfer an ABAP program to a local file on your
frontend machine. You can then edit the source code using an editor of your choice, before
loading the file into the ABAP Editor again.

Backend Editor
Uploading and Downloading Source Code

To upload a file into the ABAP Editor, choose Utilties � More utilities � Upload/download �
Upload. Enter the path and filename of the file you want to read in the dialog box, then choose
Copy.

Note that when you copy the file, its contents overwrite all of the previous contents of
the ABAP Editor.

To download a file from the ABAP Editor to a local file, choose Utilities � More utilities �
Upload/download � Download. In the dialog box, enter a path and name for the file (with an
appropriate file extension). Then choose Copy.

In the backend editor, the ABAP Editor supports the following file format:

Extension Upload/Download

ASC ASCII

BIN Binary

DAT ASCII data table with column tab

DBF DBASE format (available for download only).

IBM ASCII with IBM code page conversion (DOS)

WK1 Spreadsheet format (available for download only).

Starting the Local Editor
Specify a Path for local editing in the ABAP Editor Setting [Page 48] with the same name. The
source code is buffered under this path. Then choose Utilities � More utilities � Edit locally. The
system downloads the program source code to a local editor. When you leave the editor, the
source code is reloaded into the ABAP Editor.

Frontend Editor Mode
Uploading Source Code

To upload a local file into the ABAP Editor, choose Load local file (). Then select the required
local ASCII file.

BC ABAP Workbench Tools SAP AG

Local Editing

102 April 2001

Note that the entire contents of the ABAP Editor are overwritten with the uploaded
file.

To download the contents of the ABAP Editor to a local text file, choose Save to local file ().
Enter the path name for the local text file.
Note that this function does not apply to selected lines, but always to the entire contents of the
editor.

 SAP AG BC ABAP Workbench Tools

Creating a Program

April 2001 103

Creating a Program
Prerequisites
This description assumes that you are creating your new ABAP program in the Object Navigator.
It is also based on the most general case, and you can use it even if there is not yet a Programs
node in your object list.
You can also use the Create function from the context menu of the object node. See also
Creating New Objects [Page 27].

Procedure
10. Choose (Other object).

In the Object Selection dialog box, chose Program.

11. Enter the name of the new program.

Remember that all programs in the customer namespace must begin with Y or Z.

12. Choose .

The Create Program dialog box appears.

13. If you want your program to be an executable program, deselect the With TOP include
option. If, on the other hand, you want to create a module pool, select the option.

14. Choose to confirm your entries.

15. If you created a program with a TOP include, a dialog box appears in which you have to
enter the name of the include.

16. Choose to confirm your entries.

Another dialog box appears in which you must set other program attributes.

For details of what each attribute means, refer to Maintaining Program Attributes [Ext.].

17. Enter the program attributes and choose Save.

The Create Object Catalog Entry dialog box appears.

Assign a development class to the program.

18. Choose to confirm your entries.

BC ABAP Workbench Tools SAP AG

Creating a Program

104 April 2001

The program is added to the object list of the relevant development class and displayed
under the Programs object node. The system starts the ABAP Editor and opens the
program in change mode.

Result
The program has been created in the R/3 Repository, and its inactive version is displayed in the
ABAP Editor. You have assigned a development class, and it is thus attached to the transport
and correction system.

You can also create programs from the initial screen of the ABAP Editor (SE38).

 SAP AG BC ABAP Workbench Tools

Editing the Source Code

April 2001 105

Editing the Source Code

The precise procedure for navigation and editing source code varies according to the editor
mode that you are using. The following documentation explains these differences in detail.

Topics
Navigating in the Source Code [Page 106]

Editing Source Code (Frontend Editor) [Page 111]

Editing Source Code (Backend Editor) [Page 115]

Using the Clipboards [Page 331]

Find and Replace (Frontend Editor) [Page 119]

Find and Replace (Backend Editor) [Page 120]

Inserting Statement Patterns [Page 122]

Inserting Patterns Using Drag and Drop [Page 125]

Expanding Includes [Page 126]

Improving the Layout [Page 129]

BC ABAP Workbench Tools SAP AG

Navigating in the Source Code

106 April 2001

Navigating in the Source Code
To position the cursor within the visible area on the screen, you can simply click the left mouse
button at the required point.
The editor also has scrollbars that you can use to scroll through the source code.

There is also a range of key combinations with which you can move the cursor. These key
combinations may have different effects in the frontend and backend editor modes:

Key
combination

Moves the cursor in the frontend
editor

Moves the cursor in the
backend editor

� Up one line, possibly beyond the
visible area

Up one line, always within the
visible area

� Down one line, possibly beyond the
visible area

Down one line, always within the
visible area

� One character to the left As in the frontend editor

� One character to the right As in the frontend editor

PgUp One page up As in the frontend editor

PgDn One page down As in the frontend editor

Home To the beginning of the current line As in the frontend editor

End To the end of the current line As in the frontend editor

Ctrl + � To the beginning of the current
paragraph

Up one line

Ctrl + � To the end of the current paragraph Down one line

Ctrl + � One word to the left As in the frontend editor

Ctrl + � One word to the right As in the frontend editor

Ctrl + PgUp To before the first character in the
visible area

To the beginning of the source
code

Ctrl + PgDn To after the last character in the
visible area

To the end of the source code

Ctrl + Home To the beginning of the source code To the beginning of the current
line

Ctrl + End To the end of the source code To the end of the current line

Navigieren zu einer Zeile
Backend Editor
In the backend editor, you can navigate to a particular line by entering the line number in the
input field on the right above the editor pane. The line you entered becomes the current line, and
is displayed as the first visible line of code.

 SAP AG BC ABAP Workbench Tools

Navigating in the Source Code

April 2001 107

Frontend Editor

To navigate to a particular line in the source code:

1. Right-click in the Editor to open the context menu.

2. Choose Goto line.

3. In the dialog box, enter the required line number.

4. Choose to confirm.

The line is scrolled to the top of the display.

See also:
Navigating by Double-Click [Page 108]

Using Compression Logic [Page 110]

BC ABAP Workbench Tools SAP AG

Navigating By Double-Click

108 April 2001

Navigating By Double-Click
In order for a double-click in the ABAP Editor to have the desired effect, you must place the
cursor either directly to the left of or within the required string.

Double-clicking can trigger the following navigation steps:

Double-click To
A development object Navigate to the object definition. If the object has not yet

been defined, the system asks whether you want to create it.
If you select an object that is defined using another tool, the
system closes the ABAP Editor and starts the corresponding
tool.

The definition of an object Display a where-used list for the object. A dialog box may
appear first, allowing you to specify extra search options for
the where-used list.

An ABAP keyword Trigger an error message. Double-clicking on an ABAP
keyword is not generally supported by the navigation.

A compound ABAP structure
(IF ... ENDIF...)

Navigate to the “other half” of the structure (for example,
from METHOD to ENDMETHOD, or from ENDIF to IF).

A WHEN statement Navigate to the next WHEN statement (or ENDCASE if you
double-click the last WHEN).

An ELSEIF statement Navigate to the next ELSEIF, ELSO, or ENDIF statement.

An include name Jump to the definition of the include.

A space in the line Make the line the top line displayed on the screen

A line number Make the line the top line displayed on the screen (only
works in table control mode with line numbering).

 SAP AG BC ABAP Workbench Tools

Navigating By Double-Click

April 2001 109

Special case: Double-click on a method call in a global class:

Object >Instance method Class =>Static method

Implementation in
method editor

Definition in
Class Builder

Reference in
ABAP Editor

Double-clickDouble-click Double-clickDouble-click

Implementation in
method editor

BC ABAP Workbench Tools SAP AG

Using Compression Logic

110 April 2001

Using Compression Logic
If you want an overview of how your source code is structured in a program, you can use
compression logic. Certain parts of a program (subroutines, modules, nested ABAP statements)
form logical blocks that you can compress. As well as these predefined blocks, you can define
your own logical blocks in the source code.

Prerequisites
You can only use compression logic in the backend editor. The With compression logic option
must be active in the ABAP Editor section of your settings [Page 48].

Features
� Compression of logical blocks.

Choose .

� Expanding logical blocks.

Choose .

� Inserting your own blocks.

1. Insert a comment line beginning with *{ at the start of the block you want to define.

2. Insert a comment line beginning with *}at the end of the block.

3. Press ENTER to confirm.

The compression is not saved when you leave the ABAP Editor. When you next
open the program, all blocks will be expanded.

 SAP AG BC ABAP Workbench Tools

Editing Source Code (Frontend Editor)

April 2001 111

Editing Source Code (Frontend Editor)
Selecting Text
Using the mouse

To select Procedure
A block of text Click and hold the left-hand mouse button, drag the cursor across the

block

A line Click the left-hand mouse button to the left of the line

A set of lines Click the left-hand mouse button to the left of the first line then drag
the cursor

The entire source code Ctrl + left-hand mouse button to the left of a line.

Using the keyboard

To select Press
The entire source code Ctrl + A

The next line up Shift + �

The next line down Shift + �

One character to the left of the cursor Shift + �

One character to the right of the cursor Shift + �

One page upwards from the cursor position Shift + PgUp

One page downwards from the cursor position Shift + PgDn

To the beginning of the current line Shift + Home

To the end of the current line Shift + End

To the beginning of the current paragraph Shift + Ctrl+ �

To the end of the current paragraph Shift + Ctrl + �

To the beginning of the current word Shift + Ctrl + �

To the end of the current word Shift + Ctrl + �

To the beginning of the visible area Shift + Ctrl + PgUp

To the end of the visible area Shift + Ctrl + PgDn

To the beginning of the entire source code Shift + Ctrl + Home

To the end of the entire source code Shift + Ctrl + End

BC ABAP Workbench Tools SAP AG

Editing Source Code (Frontend Editor)

112 April 2001

Editing Text
Function Procedure
Cut Select the relevant text.

Choose Cut from the context menu (right-hand mouse
button), or choose Ctrl + X. The selected text is placed
in the buffer.

Copy Select the relevant text.
Choose Copy from the context menu (right-hand
mouse button), or choose Ctrl + C. The selected text is
placed in the buffer.

Paste Position the cursor where you want to insert the text.
Choose Paste from the context menu (right-hand
mouse button), or choose Ctrl + V. The selected text is
placed in the buffer.

Moving text using drag and drop
(within the same editor)

Select the relevant text.
Press and hold the left-hand mouse button and drag
the selected text to where you want to place it.
Release the mouse button.
The selected text is moved to the new position.

Copying text using drag and drop
(within the same editor)

Select the relevant text.
Press and hold Ctrl + the left-hand mouse button and
drag the selected text to where you want to place it.
Release the mouse button.
The selected text is copied to the new position.

Commenting out source code Select the relevant code.
From the context menu, choose Comment, or press
Ctrl + <.

Removing comments from source
code

Select the relevant code.
From the context menu, choose Uncomment or press
Ctrl + >.

Inserting Code From Other Programs Using Drag and Drop
To insert code from one ABAP program in another, open both programs (each in its own
session). Then, select the code that you want to copy and use drag and drop to place it in the
other editor. The source code will either be moved or copied (if you press and hold the Ctrl key
while dragging it, or if you opened the source program in display mode).

 SAP AG BC ABAP Workbench Tools

 Editing Source Code (Frontend Editor)

April 2001 113

Drag & DropDrag & Drop

BC ABAP Workbench Tools SAP AG

Editing Source Code (Frontend Editor)

114 April 2001

 SAP AG BC ABAP Workbench Tools

Editing Source Code (Backend Editor

April 2001 115

Editing Source Code (Backend Editor)
By default, the editor works on the current line, which is determined by the cursor position and, in
the backend editor, is highlighted.
You can, however, combine groups of lines into blocks.
This allows you to apply functions like cut, copy, and concatenate to a block of lines instead of
just to individual lines.

You can also store blocks of lines in buffers and reuse them in other sessions or systems. For
further information, refer to Using Buffers [Page 117].

Selecting Source Code

To select You must
One line Position the cursor in the required line and choose Mark from the Editor

toolbar.

A block of lines Position the cursor in the first line of the block.
Choose Mark.
Position the cursor in the last line of the block.
Choose Mark again.

To remove the marking from a block, choose Edit � Deselect.

Editing Source Code

Function Procedure
Delete a block of lines Select the block and choose Cut.

Copy a block of lines Select the block and choose Copy.
The selected block is copied to the standard buffer.

Insert a block of lines Position the cursor where you want to insert the source code
and choose Insert.
The system inserts the block currently stored in the standard
buffer

Duplicate a block of lines Select the relevant block and choose Duplicate line/block.

Shift a block horizontally Select the relevant block and choose Shift line/block.

Delete a line Position the cursor on the relevant line and choose Delete
line.

Split a line Position the cursor in the required line and press ENTER.

Insert a new line Choose Insert line.

BC ABAP Workbench Tools SAP AG

Editing Source Code (Backend Editor

116 April 2001

Join two lines Position the cursor within the required line and choose
Concatenate.

Comment out a block Select the required block and choose Utilities � Block/buffer
� Insert comment *.

Remove comment marks from
a block

Select the required block and choose Utilities � Block/buffer
� Delete comment *.

Print a block Select the required block and choose Utilities � Block/buffer
� Block � Print.

See also:
Using Buffers [Page 117]

 SAP AG BC ABAP Workbench Tools

Using Buffers

April 2001 117

Using Buffers
Use
Both modes of the ABAP Editor contain a standard buffer and three other temporary storage
areas. You can also use the clipboard of your local presentation server to copy source code
between programs in different SAP Systems.

Features
The following table provides an overview of the various buffers:

Function Use with Meaning

Copy to buffer Insert buffer Copy and insert within a single editor
session in the same system
(standard buffer). When you leave
the editor, the system deletes the
contents of the buffer.

Copy to X buffer, Copy to
Y buffer, Copy to Z buffer

Insert X buffer, Insert Y buffer,
Insert Z buffer

Copy and insert between sessions in
the same system. The editor saves
the contents of these buffers, so
they are available from all of the
sessions in the current system.

Copy to clipboard Insert clipboard Copy and insert between different
SAP systems. For example, you can
use this to copy material from a
production system into a
development system. This option
uses the clipboard on your local
presentation server.

From the frontend editor, you can access the buffers using the context menu
(block/buffer).

Copying Source Code to a Buffer
To copy program code into a buffer, select the relevant lines in the ABAP Editor and choose
Utilities � Block/buffer � Copy to... with the required buffer.

Inserting Source Code from a Buffer
To copy the source code from a buffer, position the cursor at the position where you want to
insert it and choose Utilities � Block/buffer � Insert... with the required buffer. The system then
inserts the source code from the buffer before the current line

Copying Source Code to the Clipboard

You can edit material while it is in the buffer by choosing Utilities � Block/buffer � Edit buffer
with the required buffer.

BC ABAP Workbench Tools SAP AG

Using Buffers

118 April 2001

 SAP AG BC ABAP Workbench Tools

Find and Replace (Frontend Editor)

April 2001 119

Find and Replace (Frontend Editor)
Use
You can find and replace single words or any strings in the current source code. If you are
searching locally, it makes no difference whether you are searching for a whole word or a part of
a work. There is also no distinction between upper and lower case.
The local search in the frontend editor starts at the cursor position. Once it reaches the end of the
source code, it can start again from the beginning.

You can also start a global search for any string in the source code of the corresponding main
program and replace it. You can restrict the scope of a global search by setting various search
options.

Procedure
Finding Any Text

1. Choose Find/replace, either from the context menu or in the toolbar.

2. Enter the required string and choose the relevant option.

3. Choose Find Next.
If the string exists in the text, the system positions the cursor on it.

Finding and Replacing Any Text
1. Choose Find/replace either from the context menu or from the application toolbar.

2. Enter the string for which you want to search and the replacement string, and set the relevant
options.

3. Choose Replace all, or Find next followed by Replace.
If the search string exists in the source code, it is replaced by the replacement string. If you
choose Replace all, all instances of the search string are replaced in a single step.

Using Find and Replace to Delete Words and Strings
1. Choose Find/replace either from the context menu or from the application toolbar.

2. Enter the search string and set the relevant options.

3. Choose Replace all.
All instances of the search string within the source code are deleted.

If you want to start a global search that extends beyond the current source code,
choose Edit � Find/replace or the corresponding icon in the standard toolbar. For
further details, refer to Editing Source Code in the Backend Editor [Page 111].

BC ABAP Workbench Tools SAP AG

Search and Replace (Backend Editor)

120 April 2001

Search and Replace (Backend Editor)
Use
You can search for any character string, either in the current source code, or in the source code
of the corresponding main program (global search). You can use search options to restrict the
scope of the search. As well as searching for a particular character string, you can also search
generically.

Procedure
Simple Local Search
1. Choose Search or .

The Find and Replace dialog box appears.

Enter your search string.

2. Choose .

The system searches from the current cursor position. If it finds the search string in the
current source code, it positions the cursor before it.

3. To find the next occurrence of the search string, choose .

Restricted or Generic Search
1. Choose Edit � Find/replace.

The Find and Replace dialog box appears.

2. Enter your search string.

If you want to run a generic search, use the * (asterisk) character to represent any string.
For example, if you enter st*r, the system will stop at both star and steer.
If you want to set a placeholder for a single character, use the + (plus sign). For example,
if you entered st+r, the system would find star, but not steer.

Use the pound sign (#) as an escape character. For example, to find the string 1+2,
enter 1#+2 as your search string.

3. If required, restrict the scope of the search using the following options:

As a string The system stops at the search string if it is a whole
word or a part of a word

As a word The system stops at the search string only if it is a
whole word

Upper-
/lowercase

The system stops at the search string only if it is
written with the same combination of upper- and
lowercase letters

4. If you want to search the whole main program, select In main program.

5. Choose .

 SAP AG BC ABAP Workbench Tools

Search and Replace (Backend Editor)

April 2001 121

If the system finds the search string in the source code, it displays a hit list of the
locations where it was found.

6. Double-click the entry you want to see.

The system places the cursor at the beginning of the line containing the string.

Replacing a String
1. Choose Edit � Search/replace.

The Find and Replace dialog box appears.

2. Enter the search string.

3. Select the Replace with option and enter the replace string.

4. Enter any other options to restrict the search.

5. If you want to search the whole main program, select In main program.

6. Choose .

If the system finds the search string in the source code, it displays a hit list of the
locations where it was found.

7. Choose the first entry from the list, followed by Replace.

If you are sure that you want to replace the search string wherever it occurred, you can
select the first location and then choose From cursor position w/o confirmation.

BC ABAP Workbench Tools SAP AG

Inserting Statement Patterns

122 April 2001

Inserting Statement Patterns
Use
The Pattern function allows you to insert various statement templates in your program. This is
particularly useful with complex ABAP statements, since it saves excessive typing and ensures
that the syntax of the statement you are inserting is always correct.

Features
You can insert the following statement patterns:

Statement Explanation

CALL FUNCTION Inserts a function call.

ABAP Objects pattern You can insert the following basic ABAP Objects statements:

CALL METHOD

CREATE OBJECT

RAISE EVENT

MESSAGE A MESSAGE statement for a specified message. Enter a message
ID, message type and a number. The choose ENTER to continue.

SELECT * FROM Inserts a SELECT FROM <table> statement. Enter a table name in
the field provided and choose ENTER. The system queries you for
the table fields.

PERFORM A PERFORM statement for a specified form.

AUTHORITY-CHECK An AUTHORITY-CHECK statement for a specified authorization
object. Choose ENTER to continue.

WRITE A WRITE statement for a specified structure or table.

CASE Inserts a CASE statement for a specified status.

Internal Table Inserts an internal table. You can copy the fields or the structure of
an existing table.

CALL DIALOG A CALL DIALOG statement for a specified dialog module.

Other pattern Inserts a predefined or user-defined ABAP statement.

Procedure
To insert a statement pattern in the ABAP Editor:

1. Ensure that you are in change mode, and place the cursor at the position where you want to
insert the statement.

2. Choose Pattern.

 SAP AG BC ABAP Workbench Tools

Inserting Statement Patterns

April 2001 123

The Insert Statement Pattern dialog box appears.

3. Choose the required pattern and , if necessary, the statement.

4. Choose .

5. Fill out the pattern with the required information.

Example: Statement pattern for ABAP Objects:

6. Choose to confirm your entries.

The system inserts the statement at the cursor position in the program code.

In the above example, the following lines would be inserted:
CALL METHOD picture->set_display_mode

 EXPORTING

 display_mode =

* EXCEPTIONS

* ERROR = 1

* others = 2

 .

 IF sy-subrc <> 0.

* MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO

* WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.

 ENDIF.

BC ABAP Workbench Tools SAP AG

Inserting Statement Patterns

124 April 2001

 SAP AG BC ABAP Workbench Tools

Inserting Patterns Using Drag and Drop

April 2001 125

Inserting Patterns Using Drag and Drop
Use
You can insert source code segments in the ABAP Editor easily using drag and drop. To do this,
you choose the relevant entry from the tree display in the object list or from your worklist [Page
45] and drag it to the required position in the ABAP Editor.

You can insert patterns for

� Instantiating global classes

� Calling methods of global classes

� Calling function modules

� Calling subroutines using PERFORM.

Prerequisites
You must be using the frontend editor mode of the ABAP Editor.

Procedure
To insert the pattern for a method call into your source code, you would:

1. Open the program in which you want to open the pattern.

2. In the navigation area of the Object Navigator, open the class containing the relevant
method.

3. Select the method in the tree display.

4. Drag the entry into the editor and drop it where you want to insert the pattern.

Result
The pattern for the method call is inserted at the required position, complete with all of the
parameters. Optional parameters appear as comments.
You can now complete the pattern and assign values to the parameters.

BC ABAP Workbench Tools SAP AG

Expanding Includes

126 April 2001

Expanding Includes
Use
You can expand includes that you use in your programs. The system then displays the entire
contents of the include within the program, allowing you to modify it without having to switch to
another window.

You can only use this function in the backend editor in the ABAP Editor.

Procedure
1. Open the program containing the include statement. Make sure you are in change mode.

2. Position the cursor on the line containing the include statement.

3. Choose Edit � Other functions � Expand include.

The system displays the entire contents of the include within your main program.

The include area is delimited by comment lines that indicate the start and the end of the
include.

4. Save your changes to the include.

There are two ways to do this:

� Choose . This saves the main program. The expanded include is then saved as part of the
main program, and the include program is removed from the object list of the main program.

� Position the cursor at the beginning of the include and choose Edit � Other functions �
Save include. In this case, the changes to the include are saved separately. If you then
choose , you only save the changes to the main program.

Result
When you expand an include, the expansion applies until you explicitly cancel it.

To cancel the expansion, position the cursor at the beginning of the include and
choose Edit � Other functions � Compress include. If you have changed the
include, the system asks if you want to save your changes.

 SAP AG BC ABAP Workbench Tools

Using ABAP Help

April 2001 127

Using ABAP Help
The help function in the ABAP Editor allows you to display information about ABAP syntax,
semantics, and the individual ABAP keywords.

Starting the Help
You can start the help as follows:

� By pressing F1 with the cursor positioned on a keyword in the ABAP Editor

� I button in the ABAP Editor

� By choosing Utilities� Keyword doc. from the initial screen of the ABAP Editor

� By starting transaction ABAPHELP

By selecting the bottom node in transaction ABAPDOCU

You can display help for the following areas:

You can also create an offline version of the ABAP keyword documentation on your
frontend.
The entire keyword documentation (including navigation structure) will be
downloaded in HTML format into a directory on your PC. This takes between 10 and
20 minutes. You can then open the file BASIC.HTM. The offline documentation only

BC ABAP Workbench Tools SAP AG

Using ABAP Help

128 April 2001

supports links to other topics that were also included in the download, but it can be
used independently of the R/3 System.

 SAP AG BC ABAP Workbench Tools

Improving the Layout

April 2001 129

Improving the Layout
Use
ABAP source code is stored in the database exactly as you enter it in the ABAP Editor. The
display is not automatically standardized (for example, conversion to uppercase characters).
However, you can use the Pretty Printer to standardize the layout of your program to one of the
following display variants:

� Entire program in uppercase letters

� Entire program in lowercase letters

� ABAP keywords in uppercase

The Pretty Printer also groups together statements that logically belong together by indenting
statement blocks.

See also:
Features of the Pretty Printer [Page 131]

Note that converting the ABAP keywords to uppercase can be particularly runtime-
intensive, especially with long programs.

Do not use the Pretty Printer until you are satisfied that there are no more syntax
errors in the source code.

Procedure
Standardizing the layout

Function Procedure
Uppercase display Choose Utilities � Settings. Under Pretty Printer, set the

Uppercase option, and confirm the settings.

Choose Pretty Printer.

Lowercase display Choose Utilities � Settings. Under Pretty Printer, set the
Lowercase option, and confirm the settings.

Choose Pretty Printer.

Keywords in uppercase Choose Utilities � Settings. Under Pretty Printer, set the Keyword
large option, and confirm the settings.

Choose Pretty Printer.

Indenting blocks

BC ABAP Workbench Tools SAP AG

Improving the Layout

130 April 2001

Function In textedit control mode In table control mode

Indenting a
block

Select the relevant lines and press
Tab.
The system indents the selected
lines.

Position the cursor at the point in a
line up to which you want to indent.

Choose (Indent line/block).

Repeat for each line you want to
indent.

Removing the
indentation for
a block

Select the relevant lines and press
Shift + Tab.

Procedure: Same as for indentation

Result
When you save, your ABAP source code is stored in the database with all of the layout changes
make by the Pretty Printer. When you reload the program, it is displayed exactly as it was stored
in the database, regardless of the editor.

 SAP AG BC ABAP Workbench Tools

Features of the Pretty Printer

April 2001 131

Features of the Pretty Printer
You can use the Pretty Printer function to standardize the layout of your program. This function
arranges associated key words in groups and indents individual statements clearly. The Pretty
Printer ensures that your program layout meets the guidelines described in the ABAP User's
Guide.

Features
The Pretty Printer performs the following functions:

� Standardizes the source code display according to the options you set (upper-/lowercase).

� Places event, control, and INCLUDE key words on separate lines.

� Moves event key words, FORM statements, and MODULE statements to the beginning of the
line. In this case, the Pretty Printer function uses the first program line as a reference.

� Inserts a blank line before event key words that are not preceded by a blank or a comment
line.

� Indents all command lines and control structures associated with an event by 2 spaces.

� Locates commands that extend beyond one line and writes subsequent commands on a new
line.

� Inserts appropriate comment blocks before FORM and MODULE statements that do not
have comments. The Pretty Printer function uses the routine name and the USING
parameter to fill in the comment blocks.

� Left-justifies comments that appear in command lines. Left-justification is only performed on
comment lines of 32 characters or less that begin with " (double-quotes). Pretty Printer starts
the comment at column 40.

The Pretty Printer does not break down loops and control processing blocks that are contained
on a single line. Also, the Pretty printer does not separate statements associated with a WHEN
condition if the WHEN statement is contained on one line. To call the pretty printer, select
Program � Pretty Printer.

BC ABAP Workbench Tools SAP AG

Saving and Activating Programs

132 April 2001

Saving and Activating Programs
Saving a Program
When you choose Save, the system saves an inactive version of the current program and adds it
to the user’s list of inactive objects.

The system saves your program in the database. There is no syntax check when you save.

To save the contents of the ABAP Editor, choose from the standard toolbar.

Restoring a Program After a System Crash
If the system crashes while you are working on a program, the system tries to save the program
in temporary storage. The next time you try to edit the program, the system asks you which
version you want to use – the version from the database or the temporary version.

If necessary, you can use the Compare function to compare the two versions before deciding
which version to restore.

Activating a Program
When you activate a program, the system generates an active version from the inactive version.
The activation process checks for syntax errors in your program, then generates the active
version. Finally, it generates a load version and deletes the corresponding entry from your list of
inactive objects.

To activate a program, choose or Program � Activate.

When you activate the program, the activation does not apply to all of the program
components. Screens and GUI statuses are independent transport objects, and have
to be activated separately.

Generating a Program
When you generate a program, the system creates a new load version from the active version.
Unlike activation, this operation only generates a new load version.

To generate the program, choose Program � Generate.

See also:
Status Display for Development Objects [Page 494]

 SAP AG BC ABAP Workbench Tools

Checking Programs

April 2001 133

Checking Programs
There is a range of checks that you can use in the ABAP Editor. Different checks include different
parts of the program. You can imagine an ABAP program as a framework containing a set of
components, for example, the top include and PBO and PAI modules.

Main program

TOP include Include 1 Include n

If you want to check a program or only a component of the program, you can restrict the scope of
the check.

Features
Function Description

Syntax The system checks the syntax of the selected program.

To start the syntax check

� Choose from the application toolbar, if the program is
currently displayed in the ABAP Editor.

� Select the relevant program in the object list and choose
Check � Syntax from the context menu.

This function checks the syntax of the selected program and
the top include (if the program has one). It does not check any
other includes.

Main program The system checks the syntax of the whole program and
all of its includes.

To start this check, select the main program in the object
list and choose Program � Check � Main program.

Extended program
check

The system checks the entire program and allows you to
run additional checks with a greater scope than the normal
syntax check.

See also: Extended Program Check [Page 135].

BC ABAP Workbench Tools SAP AG

Checking Programs

134 April 2001

From Checks to Corrections
In the Syntax and Main program checks, the system displays error messages in a separate pane
as soon as they occur:

If the system finds an error during the check for which it can suggest a solution, a special icon
appears next to the entry in the list. It also places the cursor on the first error in the list.
Choose this icon to correct the error automatically.

See also:
Extended Program Check [Page 135]

 SAP AG BC ABAP Workbench Tools

 Extended Program Check

April 2001 135

Extended Program Check
Process
1. Choose Program → Check → Extended program check. The system displays a list of

possible check options:

By default, all of the options are selected. For detailed information about a particular
option, place the cursor on it and choose F1.

The extended program check takes considerably longer than other checks. However, it
uses a buffer, so after the first check, you will find that it speeds up.

2. When you start the extended program check, the system displays an overview of the errors,
warnings, and messages that have been generated. For each option that you included in the
check, there is an overview of the number of errors, warnings, and messages for that
category.

BC ABAP Workbench Tools SAP AG

Extended Program Check

136 April 2001

3. If you choose an entry, the system displays the corresponding detail screen.

4. From this detail display, you can jump to the appropriate point in the program and correct it.

 SAP AG BC ABAP Workbench Tools

 Extended Program Check

April 2001 137

BC ABAP Workbench Tools SAP AG

Extended Program Check

138 April 2001

 SAP AG BC ABAP Workbench Tools

Extended Program Check

April 2001 139

BC ABAP Workbench Tools SAP AG

Maintaining Text Elements

140 April 2001

Maintaining Text Elements
Text element maintenance is a tool in the ABAP Workbench that makes it easier to maintain
program texts in different languages. Any text that a program displays on the screen can be
maintained as a text element.

Contents
Text Element Maintenance: Overview [Page 140]

Initial Screen [Page 142]

Creating and Maintaining Text Elements [Page 143]

Creating List and Column Headers [Page 144]

Maintaining Selection Texts [Page 146]

Maintaining Text Symbols [Page 148]

Comparing Text Elements [Page 151]

Comparing Selection Texts [Page 152]

Comparing Text Symbols [Page 154]

Copying Text Elements [Page 159]

Translating Text Elements [Page 160]

If you want to use text elements in conjunction with the Modification Assistant, refer
to the Modifying Text Elements [Ext.] documentation.

 SAP AG BC ABAP Workbench Tools

Maintaining Text Elements: Overview

April 2001 141

Maintaining Text Elements: Overview
Use
Use this tool to create, maintain, and translate text elements for your program.

Text elements include:

� List and column headers that appear in ABAP lists

� Selection texts on selection screens

� Text symbols that you use with the WRITE statement.
See also the text symbol [Ext.] documentation in the ABAP User's Guide.

Text elements are stored separately from the program in language-specific text
pools. Your program automatically uses the text elements in the user's logon
language.

You can create and maintain text elements without having to change the source code of your
program. You can also create standard text elements that you can copy and use in other
programs. If you work exclusively with text symbols, and do not hard-code any texts in WRITE
statements, your programs will be fully multilingual. All you then need to do is to translate the
text elements from their original language into the required foreign languages.

Translators can use the ABAP Workbench to translate the text pool of the original language into
other languages.

Features
� List and column header creation and maintenance

� Selection text and text symbol creation and maintenance

� Selection text and text symbol comparison

� Text element copy

� Text element translation

Starting the Text Element Maintenance Tool
See the initial screen [Page 142] documentation.

BC ABAP Workbench Tools SAP AG

Initial Screen

142 April 2001

Initial Screen
There are several ways of starting the text element maintenance function:

� From the R/3 initial screen, choose Tools � ABAP Workbench � Development �
Programming environ. � Text elements.

� From the Repository Browser, choose the Program objects for a program and select Text
elements.

� From the ABAP Editor, choose Goto � Text elements.

� From the initial screen of the ABAP Editor, enter the program name. Then, in the sub-objects
group box, select Text elements, and chose Display or Change.

All of the above lead to the ABAP Text elements screen:

 SAP AG BC ABAP Workbench Tools

Creating and Maintaining Text Elements

April 2001 143

Creating and Maintaining Text Elements
If you are working on a program in the ABAP Workbench and are logged onto the system in a
language other than that in which the program was created, the following happens:

� In display mode, the system warns you, using a message in the status bar, that the original
language and logon language are different. Any text elements that exist in the logon
language are displayed in that language, otherwise, they appear in the original language.
The language key is displayed in the last column. You can use this method to find text
elements that still require translation.

� In change mode, the system asks whether you want to maintain the text elements in the
original language or change the original language of the program. If you change the
language and not all of the text elements yet exist in that language, the system fills the
missing entries with the texts from the old original language.

The following sections explain how to create and maintain different kinds of text elements:

Creating List and Column Headers [Page 144]

Maintaining Selection Texts [Page 146]

Maintaining Text Symbols [Page 148]

You cannot create text elements in INCLUDE programs [Ext.] (type I).

BC ABAP Workbench Tools SAP AG

Creating List and Column Headings

144 April 2001

Creating List and Column Headings
When you create a list in a program, you can also create your own list and column headings

Procedure
From the initial screen of the ABAP Editor:

1. Enter the program name.

2. Select Text elements and choose Display or Change.

3. Select List headings and choose Change.

4. The list heading can be up to 70 characters long. Each of the four columns of the Column
heading field can be up to 255 characters long.
If you do not enter a list heading, the program title appears when the list is displayed:

5. Save your entries.

In the list and column headings, you can enter up to 10 placeholders &0 to &9, each
followed by up to 18 periods. The system replaces the placeholders in the TOP-OF-
PAGE event with the contents of the system fields SY-TVAR0 to SY-TVAR9. The
displayed length of the system fields is the length of the placeholder plus the
following periods. For example, a placeholder "&3……" would display the contents of
SY-TVAR3 with length 8 characters.

 SAP AG BC ABAP Workbench Tools

Creating List and Column Headings

April 2001 145

Result
If you created the headers as displayed above, the display would look like this:

BC ABAP Workbench Tools SAP AG

Maintaining Selection Texts

146 April 2001

Maintaining Selection Texts
You can replace the standard texts that appear next to input fields on selection screens with text
elements. You can either use a short text defined in the ABAP Dictionary or create your own
texts.

Prerequisites
You must have defined one or more selection screens for your program.

Coding example:
PROGRAM TEXT_ELEMENTS_3.

TABLES SBOOK.

PARAMETERS: PARAM(10).

SELECT-OPTIONS: SEL1 FOR SBOOK-CARRID,
 SEL2 FOR SBOOK-CONNID.

Procedure
From the ABAP Editor in change mode:

1. Choose Goto � Text elements � Selection texts.
A table appears in which you can create or edit your selection texts:

The names of your parameters and selection options appear automatically in the Name
column (as illustrated above). Each may have a selection text of up to 30 characters.

2. To use texts from the ABAP Dictionary for your selection texts, position the cursor on the
relevant line and choose Utilities � Copy DD text.
To use Dictionary texts for all fields for which they exist, choose Utilities � Copy all
Dictionary texts.
The system automatically fills the selection texts with the short texts from the ABAP
Dictionary. The Type is automatically set to DDIC. Text elements that contain ABAP
Dictionary texts appear in display mode.

 SAP AG BC ABAP Workbench Tools

Maintaining Selection Texts

April 2001 147

3. Enter texts for the remaining parameters for which you did not use the ABAP Dictionary text
(or for which none existed).

4. To change an ABAP Dictionary text, position the cursor on the corresponding line and
choose Utilities � No DD text.

5. Change the selection text.

6. Save your entries.

Result
The selection texts for the program are inserted in the text pool for the relevant language. If you
ran the program used in the above example, the following selection screen would appear:

If you change or delete parameters or selection options in your program after you
have saved the selection texts, a flag appears in the n.used column next to the
relevant text the next time you start the selection text maintenance function. This
enables you to find and delete obsolete selection texts. If you try to delete a selection
text that is still in use in the program, the system displays a warning. When you save
the selection texts, the system again informs you that there are unused texts.

BC ABAP Workbench Tools SAP AG

Maintaining Text Symbols

148 April 2001

Maintaining Text Symbols
Text symbols are special text constants that you enter and maintain independently of the
program code. In the final versions of your programs, you should use text symbols instead of
hard-coded texts. This makes the programs language-independent and easier to maintain.

For further information about literals and text symbols, refer to literals [Ext.] and text symbols
[Ext.] in the ABAP User's Guide.

Prerequisites
You must assign a three-character ID to each text symbol. You define this in the WRITE
statement as follows:
WRITE... TEXT-<idt>...

When you run the program, the system searches in the text pool for a text symbol with the ID
<idt> and displays it. If it does not find text symbol <idt>, it ignores that part of the WRITE
statement.
The ID may not begin '%_', and may not contain spaces.

The rest of this section is based on the following coding example:
 PROGRAM TEXT_ELEMENTS_2.

 WRITE: TEXT-010,
 / TEXT-AAA,
 / TEXT-020,
 / 'Default Text 030'(030),
 / 'Default Text 040'(040).

Procedure
From the ABAP Editor:

1. Enter your WRITE statement with the three-character ID and default texts.

2. Double-click one of the entries in the WRITE statement.

3. If the text symbol does not yet exist, a dialog box appears. Confirm that you want to create
the text symbol.
The text symbol maintenance screen appears.

4. Enter the text.
It may be up to 132 characters long.

5. Save the text symbol.
The maximum length mLen is automatically set to the defined length dlen (actual length of
the text).

 SAP AG BC ABAP Workbench Tools

Maintaining Text Symbols

April 2001 149

Result
The text symbol is included in the text pool in the relevant language. You can now carry on and
create other text symbols, or change existing ones.

Other Functions
Creating Further Text Symbols
1. Choose Edit � Append new lines.

2. In the Sym column, enter a three-character ID for the new text symbol, and enter the text in
the Text column.

3. Save the text symbol.
The maximum length mLen is automatically set to the defined length dlen (actual length of
the text).

Spaces in text symbols are no longer represented by underscores. This means that
you can now output underscores as characters in a text symbol.

Using Text Symbols with Text Literals
You can link a text symbol to a text literal as follows:
 WRITE... '<textliteral>'(<idt>)...

If the text symbol <idt> exists, the system uses it. If it does not exist, the system uses the text
literal <textliteral>.

For an example, see above.

If we did not create text symbols with the IDs "020" and "040" in the above example, the system
would display the following:

BC ABAP Workbench Tools SAP AG

Maintaining Text Symbols

150 April 2001

Here, the system ignores the WRITE statement for the missing text symbol 020, and uses the
default text (defined as a literal in the WRITE statement) for text symbol 040, since there is no
text symbol defined for it in the text pool.

Deleting Text Symbols
To delete a text symbol, select the appropriate line and choose Delete.

 SAP AG BC ABAP Workbench Tools

Analyzing Text Elements

April 2001 151

Analyzing Text Elements
The text element maintenance function allows you to compare text elements against the program
source code. Choose the Analyze function, either from the initial screen or from the maintenance
screen.

You can only use the Analyze function with selection texts and text symbols.

See also:
Analyzing Selection Texts [Page 152]

Analyzing Text Symbols [Page 153]

BC ABAP Workbench Tools SAP AG

Analyzing Selection Texts

152 April 2001

Analyzing Selection Texts
The Analysis function allows you to find missing or obsolete selection texts.

It is more practical than the normal selection text maintenance function for this task, but does not
let you include texts from the ABAP Dictionary.

Prerequisites
You must have defined one or more selection screens for the relevant program.

Suppose we have the following program for which no selection texts have yet been
defined:
PROGRAM TEXT_ELEMENTS_4.

TABLES SBOOK.

PARAMETERS: PARAM(10).

SELECT-OPTIONS: SEL1 FOR SBOOK-CARRID,
 SEL2 FOR SBOOK-CONNID.

Procedure
From the ABAP Editor:

1. Go to the text element maintenance initial screen [Page 142].

2. Select Selection texts and choose Analyze.
If you have not yet defined any selection texts, the following screen appears:

 SAP AG BC ABAP Workbench Tools

Analyzing Selection Texts

April 2001 153

This shows you the parameters and selection options for which you have not yet entered any
selection texts.

3. If you do not want to use texts from the ABAP Dictionary, enter your texts.

4. Select the lines that you want to analyze.

5. Choose Edit marked text.
The changed lines and the selected lines are included in the analysis.

6. If you now choose Save, the selection text for SEL1 is included in the text pool.

Result
In this case, both SEL1 and SEL2 were changed, but only SEL1 was selected, so only SEL1 is
included in the analysis.

You can edit the selection texts for all of the input fields on a selection screen using the Analyze
function.

If you want to use ABAP Dictionary texts as selection texts, you must use the text
element maintenance function as described under Maintaining selection texts [Page
146].

BC ABAP Workbench Tools SAP AG

Analyzing Text Symbols

154 April 2001

Analyzing Text Symbols
When you enter text symbols in the source code of your program, they are not automatically
entered in the text pool. To keep the list up to date and avoid discrepancies, use the Analyze
function.

This allows you to

� Delete obsolete text symbols from the text pool

� Adopt new text symbols in the text pool

This is important for text symbols that are used in the program, but not yet included in the
text pool

� Compare text symbols with the program code

Prerequisites

Suppose we have the following program for which no text symbols have yet been
maintained:
PROGRAM TEXT_ELEMENTS_4.

WRITE: TEXT-010,

 /'Default Text'(020),

 /TEXT-030.

Procedure
From the ABAP Editor:

1. Go to the text element maintenance initial screen [Page 142].

2. Select Text symbols and choose Analyze.
If you have not yet maintained any text symbols for the program, the following screen
appears:

 SAP AG BC ABAP Workbench Tools

Analyzing Text Symbols

April 2001 155

Since the list of text symbols is empty, the second option is selected.

3. Choose Edit.
The following screen appears:

4. Select the text symbols that you want to include in the text pool.

5. Choose Insert text symbol.
The selected text symbols are marked for transfer into the text pool. The following screen
appears:

BC ABAP Workbench Tools SAP AG

Analyzing Text Symbols

156 April 2001

6. Use the Log function to display the changes again.

7. You can adopt the changes by choosing Save, or cancel them by choosing Undo.

Result
If we choose Save in our example, the system inserts the text symbols "010", "020", and "030" in
the text pool. No texts are assigned to symbols "010" or "030", but the text literal defined in the
program is assigned to symbol "020".

Other Functions

You can change the above program slightly to use other analysis functions.
PROGRAM TEXT_ELEMENTS_4.

WRITE: TEXT-010,

 /'Default Text'(020),

 /'Test_Symbol'(030).

Comparing Text Symbols with the Source Code
You can compare texts that are defined differently in the program and in the text pool as follows:

1. Select Text symbols defined repeatedly/differently in program.

2. Choose Edit.
In our example, the following screen would appear:

 SAP AG BC ABAP Workbench Tools

Analyzing Text Symbols

April 2001 157

You can now replace the empty text from text symbol 030 in the text pool with the program
text "test_symbol".
The third column indicates whether the text is defined in the text pool (T) or in the program
(P).

3. Choose Replace.

4. Save your entries.

Deleting Text Symbols from the Text Pool

Before deleting a text symbol, check its where-used list.

To delete text symbols from the text pool in the Analysis results:

1. Select the first option: Text symbols which can be deleted from the text pool.

2. Choose Edit.

3. If text symbol "020" is no longer needed in the program, you can delete it.

4. Choose Delete.

BC ABAP Workbench Tools SAP AG

Analyzing Text Symbols

158 April 2001

 SAP AG BC ABAP Workbench Tools

Copying Text Elements

April 2001 159

Copying Text Elements
You can copy text elements from one ABAP program to another. The copy function allows you to
copy sets of standard text elements.

Procedure
1. Go to the text element maintenance initial screen [Page 142].

2. Choose Copy.
The following dialog box appears: :

3. Enter the name of the target program.

4. Select the text elements that you want to copy.

5. Choose Copy.

Result
The selected text elements are copied from the source program to the target program.

BC ABAP Workbench Tools SAP AG

Translating Text Elements

160 April 2001

Translating Text Elements
Text elements help you to write language-independent programs. They are stored in the text pool
of their language, and can be translated using the normal translation process.

Prerequisites
You have maintained text elements in the original language.

Procedure
1. Choose Utilities � Translation � Short and long texts.

The initial screen of the translation transaction (SE63) appears.

2. Choose Translation � Short texts � Program texts.
The following screen appears:

3. Enter the program name, the source language, and the target language.

4. Choose Edit.
The text elements are displayed in the language in which you created them.

 SAP AG BC ABAP Workbench Tools

Translating Text Elements

April 2001 161

You can also access the translation tool from the text element maintenance screen
by choosing Goto � Translation.

5. Translate the texts.

6. Save your translation.

Result
You have created text pool for a different languages.

Once you have created text pools for different languages, you can change the language in which
you run the program by changing one of the following:

� The logon language. The default language for your program is the logon language of the
user.

� The SET LANGUAGE statement. This ABAP statement allows you to set the output
language explicitly and independently of the logon language.

Syntax
SET LANGUAGE < lg >.

The language <lg> can be a literal or a variable.

Once you have set a language (using either method), the system only looks in the text pool of
that language. If it cannot find the relevant text symbols in that pool, it displays the default text
specified in the program source code (if one exists), otherwise, it skips the corresponding WRITE
statement.

BC ABAP Workbench Tools SAP AG

Variants

162 April 2001

Variants
Variants allow you to save sets of input values for programs that you often start with the same
selections. You can use them for any programs except subroutine pools (type S).

Contents
Variants: Overview [Page 163]

Initial Screen [Page 165]

Displaying a Variant Overview [Page 166]

Creating and Maintaining Variants [Page 167]

Creating Variants [Page 168]

Attributes of Variants [Page 170]

Changing Variants [Page 173]

Deleting Variants [Page 174]

Printing Variants [Page 175]

Variable Values in Variants [Page 176]

Creating Variables for Date Calculations [Page 177]

User-specific Selection Variables [Page 179]

Creating User-specific Variables [Page 180]

Changing Values Interactively [Page 181]

Changing Values from the Program [Page 182]

Fixed Values from Table TVARV [Page 183]

Creating Table Variables from TVARV [Page 184]

Changing TVARV entries [Page 186]

Running a Program with a Variant [Page 189]

 SAP AG BC ABAP Workbench Tools

Variants: Overview

April 2001 163

Variants: Overview
Use
Whenever you start a program in which selection screens are defined, the system displays a set
of input fields for database-specific and program-specific selections. To select a certain set of
data, you enter an appropriate range of values.
For further information about selection screens, see Working with selection screens [Ext.] in the
ABAP User's Guide.

If you often run the same program with the same set of selections (for example, to create a
monthly statistical report), you can save the values in a selection set called a variant.

You can create any number of variants for any program in which selection screens
are defined. Variants are assigned exclusively to the program for which they were
created.

You can also use variants to change the appearance of the selection screen by hiding selection
criteria. This is particularly useful when you are working with large selection screens on which not
all of the fields are relevant.

Reports, module pools, and function groups may have several selection screens. It is
therefore possible to create a variant for more than one selection screen.

Variants are an interface between the user and the selection screen. They can be used both in
dialog and in background mode, although their uses are slightly different.

Variants in Dialog Mode
In dialog mode, variants make things easier for the user, since they save him or her from
continually having to enter identical values. They can also make the selection screen easier to
read, because you can use them to hide input fields. Running an executable program with a
variant containing an optimal set of values also reduces the capacity for user error. The
optimized database selections speed up the runtime of the program.

Variants in Background Mode
Variants are the only method for passing values to a report program in a background job.
Therefore, when you run a program in the background, you must use a variant (or SUBMIT... VIA
JOB). To avoid you having to create a new variant each time you run the report, ABAP contains a
mechanism allowing you to pass variable values to variants. See variable values in variants
[Page 176].

To ensure that an executable program is always started using a variant, you can specify in the
program attributes that the program may only be started in this way.

Features
� Creation of variants

� Display, change, copy, print, and delete variants

� Use and definition of variables in variants

– Variable date calculation

BC ABAP Workbench Tools SAP AG

Variants: Overview

164 April 2001

– User-specific fixed values

– Fixed values in table TVARV

 SAP AG BC ABAP Workbench Tools

Initial Screen

April 2001 165

Initial Screen
You access the variant maintenance tool from the initial screen of the ABAP Editor. Enter the
name of the program, select Variants in the Sub-objects group box, and then choose Display or
Change.

Functions
The above screen allows you to:

� Create variants

� Display the variant directory

� Display and change values and attributes

� Copy, delete, and rename variants

BC ABAP Workbench Tools SAP AG

Displaying an Overview of Variants

166 April 2001

Displaying an Overview of Variants
Before creating a new variant for a program, you should check whether you can use or adapt an
existing variant instead.

There are two ways to display variants:

� Position the cursor on the Variant field on the initial screen and press F4. The following
dialog box lists all of the available variants:

� Choose Variants � Directory on the initial screen:

 SAP AG BC ABAP Workbench Tools

Creating and Maintaining Variants

April 2001 167

Creating and Maintaining Variants
Contents
Creating Variants [Page 168]

Variant Attribtues [Page 170]

Changing Variants [Page 173]

Deleting Variants [Page 174]

Printing Variants [Page 175]

BC ABAP Workbench Tools SAP AG

Creating Variants

168 April 2001

Creating Variants
Prerequisites
You must have defined one or more selection screens for the relevant program. The program
may have any type except type S.

Procedure
1. On the initial screen of the ABAP Editor, enter the name of the program for which you want to

create a variant, select Variants in the Sub-objects group box, and choose Change.

2. On the variant maintenance initial screen [Page 165], enter the name of the variant you want
to create.
Note the naming convention for variants (see below).

3. Choose Create.
If the program has more than one selection screen, a dialog box appears in which you can
assign the variant to one or more screens. The dialog box does not appear if the program
only has one selection screen. In this case, the selection screen of the program appears
straight away.

4. If there is more than one selection screen, select the screens for which you want to create
the variant.

Example:

If you choose Variant for all selection screens, the variant also applies to any
selection screens that you create after creating the variant.

 SAP AG BC ABAP Workbench Tools

Creating Variants

April 2001 169

Otherwise, the variant only supplies values to the selection screens that you select in
the list.

5. Choose Continue.
The (first) selection screen of the program appears.
If your program has more than one selection screen, use the scroll buttons in the left-hand
corner of the application toolbar to navigate between them. If you keep scrolling forwards, the
Continue button appears on the last selection screen.

6. Enter the required selections, including multiple and dynamic selections.

7. Choose Continue.

Result
When you have finished, an overview screen appears (ABAP: Save Attributes of Variant), on
which you can enter the attributes of your variant [Page 170] and save it.

Note that when you create a new variant, you must enter both values and attributes.

Names of variants: Names can consist of up to 14 alphanumeric characters. The "%
" character is not allowed. If you want the variant to be transported automatically with
its program, you must create a system variant. The name of a system variant starts
"CUS&" for customers, and "SAP&" for SAP system variants. You can only use the
"&" character within this prefix in the name of a system variant. It may not occur in
any other context. System variants are administered by the Workbench Organizer.
Although you can create and access variants from any client, they are always stored
in client "000".

BC ABAP Workbench Tools SAP AG

Variant Attributes

170 April 2001

Variant Attributes
To maintain the attributes of a variant, follow the same procedure as described in creating a
variant [Page 168].

Example:

You can enter the following attributes on the ABAP: Save Attributes of Variant … screen:

� Description
Enter a short, meaningful description of the variant. This can be up to 30 characters long.

� Only for background processing
Select this field if you want the variant to be available for background processing but not
in dialog mode.

� Protect variant
Select this field if you want to prevent your variant being changed by other users.

� Only display in catalog
Select this field if you only want the variant name to be displayed in the variant catalog
(and not when the user calls the F4 value help).

� System variant
This field cannot accept input. It is set automatically when a system variant (beginning
with CUS& or SAP&) is created.

You can also assign the following further attributes to the selections in a variant:

 SAP AG BC ABAP Workbench Tools

Variant Attributes

April 2001 171

� Type
The system indicates here whether a field is a parameter (P) or a selection option (S).

� Protected
Select this column for each selection that you want to write-protect on the selection
screen. These fields are visible on the selection screen when the user starts a program
with the variant, but do not accept user input.

� Invisible
If you select this column, the system hides the corresponding field on the selection
screen. This allows you to change the appearance of the selection screen.

� Selection variable
If you select this column, you can set the value of the corresponding selection
dynamically at runtime. The different ways of doing this are explained in the section
Variable Values in Variants [Page 176].

� Without values
If you select this field, the contents of the corresponding field are not saved with the
variant.

This is useful if you do not want to overwrite the contents of this field on the selection
screen.

For example, suppose you create a report 'SAPTEST', with the parameter 'TEST', for
which you create the variant 'TESTVARIANT'. In the variant, you set the 'Without values'
flag for the parameter. Then, you run time program and enter the value 'ABCD' in the
TEST field. If you now retrieve the 'TESTVARIANT' variant, the TEST field retains the
value ABC instead of being overwritten by SPACE.

� SPA/GPA
This attribute only appears if you created the corresponding selection criterion using
'MEMORY ID xxx’. You can switch the SPA/GPA handling on and off in the variant. This
means that fields filled using SPA/GPA appear with their initial values after you have
loaded a variant in which those fields have an initial value.

Other Functions
Save
When you have entered all of the parameters, save your settings. When you create a new
variant, you must enter both values and attributes. You can only save your variant on the
attribute screen. However, if you only want to change values or attributes of an existing variant,
you can save on the corresponding screen.

Changing the Screen Assignment
The attribute screen lists all of the selection screens for which the variant is defined. While it is
possible for the same selection criterion to appear on more than one screen, the selection
criterion itself may be a global field in the program. For this reason, it can only be set once, when
the selection criterion occurs for the first time.

BC ABAP Workbench Tools SAP AG

Variant Attributes

172 April 2001

If you want to change the screen assignment later on, choose Change screen assignment.

Defining Selection Variables
See Variable Values in Variants [Page 176

 SAP AG BC ABAP Workbench Tools

Changing Variants

April 2001 173

Changing Variants
Procedure
To change a variant:

1. Open the variant as described in Creating a variant [Page 168].

2. On the initial screen [Page 165], choose Values or Attributes.

3. Choose Change.
Depending on your choice in step 2, the program selection screen or the attributes [Page
170] screen appears.

4. When you have finished changing the values or attributes, save your changes on the same
screen.

BC ABAP Workbench Tools SAP AG

Deleting Variants

174 April 2001

Deleting Variants
Procedure
1. Open the appropriate variant as described in Creating a Variant [Page 168].

2. On the initial screen [Page 165, choose Variants ��Delete.
The ABAP: Delete Variants dialog box appears.

3. Choose whether you want to delete the variant in all clients, or only in the current client.

4. Confirm your choice.

Result
The system displays an appropriate message in the status bar.

You can delete several variants at once from the variant catalog. Choose Delete
variants, select the relevant variants in the selection dialog box, and choose Delete.

 SAP AG BC ABAP Workbench Tools

Printing Variants

April 2001 175

Printing Variants
Procedure
To print a variant, enter its name on the initial screen of the variant maintenance tool, select
either Attributes or Values in the sub-objects group box and choose Print. Note that you cannot
print the values if you are working in change mode.

The Print Screen List screen appears.

If the default print parameters are incorrect, enter the correct values (consult your system
administrator if you are not sure). Ensure that the Output immediately option is set.

Choose Print.

BC ABAP Workbench Tools SAP AG

Variable Values in Variants

176 April 2001

Variable Values in Variants
To avoid having to create a new variant each time you use different values, you can use
variables in variants.

There are three ways to do this:

� Variable date calculations (see also Creating variables for date calculation [Page 177])

You can use this option when you need to use a date in a variant, for example, today's
date, or the last day of the previous month.

� User-specific values (see also User-specific selection variables [Page 179])

You can use this option to enter user-specific values in a selection field.

� Values defined in table TVARV (see also Fixed values in table TVARV [Page 183])

To fill selection fields for a specific task using a variant you can save fixed values in table
TVARV. To avoid having to create new variants for each minor change in the selection
values, you can assign a value in table TVARV to a selection and then just change this
value. This is particularly important if the corresponding value on the selection screen is
write-protected.

 SAP AG BC ABAP Workbench Tools

Using Variables for Date Calculations

April 2001 177

Using Variables for Date Calculations
Prerequisites
To use a selection variable for date calculation, you must have defined a date field as a
parameter or select-option in your program.

PARAMETERS DATE LIKE SY-DATUM.

Procedure
To assign a date calculation variable to an existing variant:

1. Enter the name of the variant on the initial screen of the variant maintenance tool.

2. Select the Attributes option.

3. Choose Change.
The attributes [Page 170] screen appears.

4. Select the Selection variable column for the appropriate attribute.

5. Choose Selection variables.
The selection variables screen appears. You can now assign a variable to the date field.
Example:

6. Position the cursor on the line in which the stoplight in the "D" column is yellow.

7. Single-click the stoplight to turn it to green.

8. Scroll to the right in the display and choose the F4 value help to display proposals for the
date calculation:

BC ABAP Workbench Tools SAP AG

Using Variables for Date Calculations

178 April 2001

9. Select an entry and choose Choose.

Add further parameters if necessary. To subtract days, the minus sign must follow
the number (for example, 10-).

Note that you cannot change the proposals in the list or add new proposals.

10. Save your entries.
The attribute screen reappears.

11. Save the attributes.

Result
You have assigned a variable to a variant for date calculation. Note that after choosing the
selection variable, you must save the attributes again on the attributes screen.

Use the selection options pushbutton on the selection variable screen to enter further options for
the date variable.

 SAP AG BC ABAP Workbench Tools

User-specific Selection Variables

April 2001 179

User-specific Selection Variables
Use
You can use user-specific selection variables to make input values in a variant user-dependent.
The values are saved in tables for all authorized users, and retrieved when the user starts a
program using the corresponding variable.

This means that you can create variants in which users do not constantly have to enter static
values such as their personnel number or company code whenever they run the program.
Instead, they only have to fill out the fields whose values change each time they run the program.
As a result, several users can benefit from a single variant.

Prerequisites
To place user-specific values in a field, the master record of the relevant user must contain the
corresponding user parameter with a parameter ID <pid>.

In an executable program (report), you must create a parameter or selection option using the
addition...MEMORY ID <pid> with the correct parameter ID (see Using default values from SAP
memory [Ext.]).

DATA: CCODE(6).
...
SELECT-OPTIONS: CC FOR CCODE MEMORY ID BUK.
...

Features
Creating User Values
See Creating user-specific variables [Page 180].

Changing User Values
You can change the values of an existing user variable in two ways:

� Using the function module VARI_USER_VARS_*. See Changing values from the program
[Page 182])

� From the selection screen (changed by the user him- or herself). See Changing values
interactively [Page 181]).

BC ABAP Workbench Tools SAP AG

Creating User-specific Variables

180 April 2001

Creating User-specific Variables
Prerequisites
See the prerequisites under User-specific selection variables [Page 179].

Procedure
To create a user-specific variable for an existing variant:

1. Enter the name of the variant on the initial screen of the variant maintenance tool.

2. Select Attributes.

3. Choose Change.
The attributes [Page 170] screen appears.

4. On the attributes screen, select the selection variable option for the required fields.

5. Choose Selection variables.
The selection variables screen appears.

6. Position the cursor on the line in which the stoplight in the "B" column is yellow.

7. Single-click the stoplight to turn it to green.

8. Scroll to the right in the display, and choose the F4 value help to choose proposed values
from the user master record.

9. Select an entry and choose Choose

10. Save your entries.
The attributes screen reappears.

11. Save the attributes.

 SAP AG BC ABAP Workbench Tools

Changing Values Interactively

April 2001 181

Changing Values Interactively
Users can change the values of their user-specific variables on the selection screen.

Prerequisites
The selection screen of the program must be displayed.

Procedure
1. Choose Goto � User variables. A dialog box appears, containing the user-specific selection

criteria and parameters. From here, you can display or change the values.

2. If you choose Change, a further dialog box appears, in which you can decide whether to
accept the values proposed in the variables or use the entries on the selection screen.

3. In either case, another dialog box appears, in which you can enter and save the required
values.

Note that these changes affect all variants that use the same user-specific variables.

BC ABAP Workbench Tools SAP AG

Changing Values from a Program

182 April 2001

Changing Values from a Program
There is a range of function modules that allow you to work with user variables in your program:

Function module Function
VARI_USER_VARS_GET Reads existing variable values

VARI_USER_VARS_SET Changes existing variable values

VARI_USER_VARS_COPY Copies variable values

VARI_USER_VARS_DELETE Deletes variable values

VARI_USER_VARS_RENAME Renames variable values

VARI_USER_VARS_DIALOG Dialog for entering variable values

To include these function modules in your program, choose Edit � Insert statement
� CALL FUNCTION from the ABAP Editor.

 SAP AG BC ABAP Workbench Tools

Fixed Values from Table TVARV

April 2001 183

Fixed Values from Table TVARV
Use
Using fixed values from table TVARV is particularly useful in background processing. You do not
need to create a new variant or keep changing an existing variant each time a value changes.
Instead, you can change the relevant values in table TVARV.

Note that changes to a value in table TVARV are visible in all of the variants that use
the variable.

Features
� Creating new table variables from table TVARV.

See Creating table variables from table TVARV [Page 184].

� Changing an existing entry in table TVARV.
See Changing entries [Page 186].

BC ABAP Workbench Tools SAP AG

Creating Table Variables in Table TVARV

184 April 2001

Creating Table Variables in Table TVARV
There are two ways of assigning TVARV entries to a selection variant. You can either select
existing entries, or create new entries in the table.

Procedure
1. On the variant maintenance initial screen, enter the required variant.

2. Select the Attributes option.

3. Choose Change.
The attributes [Page 170] screen appears.

4. On the attributes screen, select the Selection variable column.

5. Choose Selection variables.
The selection variables screen appears. You can now assign an entry from table TVARV to
the selection variant that you have chosen.

6. Choose the possible entries help next to the Variable name field. A list appears, from which
you can select an entry. If you do this, jump to step 11 of the procedure.

To display the values of a variable in the list, select the variable and chose Values.
The system displays the corresponding values from table TVARV.

7. To create a new variable, enter a name and choose Create.
The Maintain Table TVARV screen appears.

8. Enter the name of the variable and choose Create.
A dialog box appears, in which you can enter the values for the variant.

 SAP AG BC ABAP Workbench Tools

Creating Table Variables in Table TVARV

April 2001 185

9. Enter the parameter value or the value for selection criteria.

10. Choose Save.
You return to the Maintain Table TVARV screen.

11. Go back to the selection variable screen.
The system automatically enters the name of the variable in the right field.

12. Choose Save.
You return to the attributes screen.

13. Save the attributes.

Result
In this procedure, you have created a new variable in the table TVARV, maintained its values,
and assigned the variable to a selection variant. The new variable appears when you next call
the F4 help.

BC ABAP Workbench Tools SAP AG

Changing Entries in Table TVARV

186 April 2001

Changing Entries in Table TVARV

Note that any changes you make to values in TVARV affect all of the variants that
use the associated variables.

Starting the Table Maintenance
To change fixed values in table TVARV, start Transaction SM31. Enter “TVARV” as the table
name. The table maintenance screen appears:

Functions
Displaying Variable Values
To display the value of a variable:

� If you know the name of the variable, you can enter its name and type directly and choose
Display.

� To display a list of variables, choose Directory.

A selection screen appears, on which you can enter criteria for the set of variables from
which you want to choose. If you do not enter any selection criteria, the system lists all
variables in the table.

Choose Execute to display the list of variables.

To display a variable, double-click its entry in the list.

 SAP AG BC ABAP Workbench Tools

Changing Entries in Table TVARV

April 2001 187

If you chose a parameter, a dialog box, containing its current value, appears.

If you chose a select-option, its values are displayed on a new screen.

Changing Variable Values
To change the value of a variable:

1. If you know the name and type of the variable, you can call it directly. Enter the name and
type and choose Change.

To display a list of variables, choose Directory.

A selection screen appears, on which you can enter criteria for the set of variables from
which you want to choose. If you do not enter any selection criteria, the system lists all
variables in the table.

To choose a variable, double-click its entry in the list.

If you chose a parameter, a dialog box, containing its current value, appears.

If you chose a select-option, its values are displayed on a new screen.

2. Change the value as required.

3. Save the new value.

The new value has now been added to table TVARV, and will be placed in the relevant field
at runtime.

Adding Variable Values
To add a new value directly to table TVARV, enter its name and type and choose Create.

If you set the select option radio button, a screen containing empty input fields appears, on which
you can enter lower and upper values, operators, and an inclusive or exclusive flag.

If you set the parameter option, a dialog box appears, in which you can enter the appropriate
value.

Save the new variable.

Remember that you must enter the variable name in the variant(s) in which you want to use it.

Copying Variable Values
To copy a variable, enter its name and type and choose Copy.

A dialog box appears. Enter the name of the new variable and choose Copy.

You can now change the new variable. Remember to enter the variable name in the variants in
which you want to use it.

You can also copy variables from the directory display.

Deleting Variables
To delete a variable, enter its name and type and choose Delete.

A confirmation prompt appears, in which you can either confirm or cancel the action.

You can also delete variables from the directory display.

BC ABAP Workbench Tools SAP AG

Changing Entries in Table TVARV

188 April 2001

 SAP AG BC ABAP Workbench Tools

Executing a Program with a Variant

April 2001 189

Executing a Program with a Variant
Requirements
The program that you want to execute may be any type except S, and must have one or more
selection screens. You must have defined variants for the program.

Procedure
1. On the initial screen of the ABAP Editor, enter the name of the program that you want to run.

2. Choose Execute with Variant.
A dialog box appears, in which you can enter a variant.

3. To display a list of all variants for the program, use the possible values help.

4. Choose a variant.

5. Choose Choose to confirm your choice.
 The selection screen of the program appears. The fields for which values exist in the variant
already contain values.

6. Choose Execute to run the program.

BC ABAP Workbench Tools SAP AG

Maintaining Messages

190 April 2001

Maintaining Messages
Messages allow you to communicate with users from your programs. They are mainly used when
the user has made an invalid entry on a screen.
To send messages from a program, you must link it to a message class. Each message class
has an ID, and usually contains a whole set of message. Each message has a single line of text,
and may contain placeholders for variables.
All messages are stored in table T100. You create and edit them using Transaction SE91. Once
you have created a message, you can use it in the MESSAGE statement in a program.

For further information about messages, see the messages [Ext.] section of the ABAP
Programming Guide.

Starting the Message Maintenance Transaction
� Using forward navigation from the ABAP Editor.

� You can display the messages for your program from the ABAP Editor by choosing Goto �
Messages. The Maintain Messages screen appears. By default, the system display the
message class linked to the current program.

� You can also enter Transaction SE91.

If you choose Goto � Messages from the ABAP Editor and your program does not have a
defined message class, the system assumes you want to browse an existing class and prompts
you for a message class ID.

See also
Creating Message Classes [Page 191]

Adding Messages [Page 192]

Creating a Message Long Text [Page 193]

Assigning an IMG Activity to a Message [Page 194]

 SAP AG BC ABAP Workbench Tools

Creating Message Classes

April 2001 191

Creating Message Classes
Procedure
To create a new message class from the ABAP Editor:

1. Enter a message ID in the introductory statement to the program (like REPORT), or directly
in a MESSAGE ID <id> statement. The name may be up to 20 characters long. Example:

REPORT <Name> MESSAGE-ID <messageclass>.
Messages are visible systemwide. Your message ID (name of the message class) may
therefore not already exist in the system.

2. Double-click the message ID.

If you specified a message ID that already exists, the system opens the Maintain
Message dialog box. If this happens, you can simply enter another ID. If you entered a
message ID that does not yet exist, a dialog box appears, in which you are asked
whether you want to create a new message class.

3. Choose Yes.

The Maintain Message Class screen appears.

4. Enter a short text for the message class.

5. Choose Save.

Result
If you choose Messages, you can add new messages to your message class. If you double-click
the message ID in your program, you can return to the Maintain Message Class screen at any
time.

See also Adding Messages [Page 192].

BC ABAP Workbench Tools SAP AG

Adding Messages

192 April 2001

Adding Messages
Prerequisites
You must already have specified a valid message class in your ABAP program.

Procedure
To add new messages to a message class from the ABAP Editor:

1. Choose Goto � Messages.
A list of all messages in the relevant message class appears.

2. Select the next free message number.

3. Choose Individual maint..
You can now enter a text in the corresponding line.

4. Enter the message text.

5. If the message text is self-explanatory, set the corresponding flag next to the text field.
Remember that you cannot maintain long texts for self-explanatory message texts. See also
Creating a Message Long Text [Page 193].

6. Choose Save.

You can also create new messages using forward navigation. In the MESSAGE
statement, enter a new message number and then double-click it. You should
preferably enter the next free number in the message class. However, if you do not
know it, you can enter any number and subsequently correct it.

Result
You can now use the message that you have defined in the MESSAGE statement in your
program.

 SAP AG BC ABAP Workbench Tools

Creating a Message Long Text

April 2001 193

Creating a Message Long Text
Use
Create a long text whenever the message text itself is not fully self-explanatory.

Prerequisites
You must already have created the message for which you want to create the long text, and not
flagged it as self-explanatory.

Procedure
To enter a long text for a message in the message maintenance transaction (SE91):

1. Position the cursor on the relevant message.

2. Choose Individual maint.
The message text appears highlighted.

3. Choose Long text.
The SAPscript editor appears.

4. Enter your long text.

5. Check the text.

6. Save the text.

Result
When you send a message that has a long text, the message is displayed with a yellow question
mark symbol.
Depending on the SAPgui settings, the message is displayed:

� In the status bar (at the end of the message area),

� In the message dialog box (on the Help pushbutton).

If you then click the message line or the Help pushbutton, the long text is displayed.

BC ABAP Workbench Tools SAP AG

Assigning IMG Activities to a Message

194 April 2001

Assigning IMG Activities to a Message
Use
Use this function whenever you want to branch from a message to one or more relevant activities
in the Implementation Guide.

Prerequisites
� You must already have created a short text for the message.

� The IMG activities that you want to specify must exist in the Implementation Guide.

Procedure
To assign an IMG activity from Transaction SE91:

1. Position the cursor on the appropriate message in the list.

2. Choose Individual maint.
The corresponding short text is highlighted.

3. Choose Goto � Additional information.
The Maintain Additional Assignment Information dialog box appears.

4. Choose an activity, using the possible entries help if required.

5. Save the assignment.
A confirmation message appears in the status bar.

Result
You have now assigned one or more IMG activities to a message. When the message is sent
from a program, the user can branch directly to the Implementation Guide and execute the
corresponding activity or activities.
To do this, click the status bar when the message is displayed. The Help dialog box appears, in
which you should then choose Maintain entries (pencil icon). The Choose Customizing Project
dialog box appears, from which you can choose the project in which you want to execute the
activities.

 SAP AG BC ABAP Workbench Tools

The Splitscreen Editor

April 2001 195

The Splitscreen Editor
The splitscreen editor allows you to display the source code of two programs side by side. The
two programs do not necessarily have to be in the same system. The editor contains a restricted
set of normal ABAP Editor functions, complemented by additional special splitscreen functions.

Contents
Overview [Page 196]

Starting the Splitscreen Editor [Page 197]

The Initial Screen [Page 198]

Special Splitscreen Editor Functions [Page 199]

Editor Functions [Page 201]

If you intend to use the splitscreen editor in conjunction with the Modification
Assistant, refer to the Aligning Program Sections [Ext.] documentation.

BC ABAP Workbench Tools SAP AG

Overview

196 April 2001

Overview
Use
The new splitscreen editor replaces the old transaction SE39. You can use it in the Modification
Assistant and Editor to compare database and clipboard contents.

You can still use the old splitscreen editor. It is available under transaction code
TSE39.

Prerequisites
If you intend to compare programs between systems, the remote system must be entered in the
RFC destinations table RFCDES.

Features
� Comparison of source code both within a system and between systems.

� Synchronization is now statement-based instead of line-based.

� Each half of the screen is a version of the ABAP Editor with a restricted range of functions.

� Extra splitscreen editor functions, such as comparison, text positioning, and copying blocks
to the other side.

� You can configure the editor using the Settings function (editor view and comparison
algorithms)

� You can switch the window sizes between ‘Small’ and ‘Large’.

Navigation
You can use forward navigation from the splitscreen editor. Objects to which you navigate are
always displayed in the fullscreen.

 SAP AG BC ABAP Workbench Tools

Starting the Splitscreen Editor

April 2001 197

Starting the Splitscreen Editor
There are various ways of starting the splitscreen editor:

� From any screen by entering Transaction SE39.

� From the Modification Assistant

� From the ABAP Editor, if the clipboard is not empty.

Special Features
Using Transaction SE39
You can display or change any source code. You can display, change, compare, and save both
code extracts in the splitscreen editor. The extracts may either both be in the same system, or
one of them may be in a remote system. You cannot change or save a source code extract that
you are displaying remotely. Equally, you cannot navigate in the remote system.

From the Modification Assistant
The splitscreen editor has an editing window on the left, and a display window on the right.
The old SAP source code appears in the display window. Modified lines of code are flagged in
the editor. You cannot switch the right-hand window to change mode.

The new SAP source code appears in modification mode in the editing window. You cannot
change this code, but you can use the functions Delete, Insert, and Replace. The system
compares the two versions and marks the differences on both sides. There is also a function that
allows you to select a single block in the display window. You can then copy this to the
corresponding position in the editing window. It is also possible to copy source code into the
editing window using the Select, Copy to buffer, and Insert buffer functions.

From the ABAP Editor
If there is data on the clipboard during an ABAP Editor session, you can use the splitscreen
editor to compare the two versions. The system starts the editor in compare mode. You can
change the database version, but not the clipboard version.

BC ABAP Workbench Tools SAP AG

Initial Screen

198 April 2001

Initial Screen
Comparing Programs in the Current R/3 System

Comparing Programs in Different Systems
To compare a program in the current system with one in another system, choose Compare
different systems from the initial screen of the splitscreen editor. A field appears on the screen in
which you can enter the RFC destination of the R/3 System containing the required program.

In the RFC destination field you can only enter systems for which an entry exists in
table RFCDES.

 SAP AG BC ABAP Workbench Tools

Special Splitscreen Editor Functions

April 2001 199

Special Splitscreen Editor Functions
The splitscreen editor suppores the special functions listed below. Some of these are not active
in all of the contexts in which you can use the editor. For further information, refer to Starting the
splitscreen editor [Page 197].

Compare
Compares the two sets of source code. The comparison is no longer line-based (as in previous
versions of the splitscreen editor). Instead it is statement-based. You can suppress comment
lines and indentations using the Settings function.

The results of the comparison are displayed using highlighting. Where lines have been inserted,
the system inserts the same number of blank lines at the corresponding position. In compare
mode, the system scrolls both windows when you use the arrow keys. To scroll asynchronously,
use the scrollbars and page up / page down keys.

Compare Mode Off
Switching off compare mode removes the blank lines inserted in the source code and the special
formatting used to highlight the difference. It also switches off the synchronous scrolling function.

Next Similarity
The system positions both windows at the next point that is identical on both sides.

Presvious Similarity
The system positions both windows at the previous point that is identical on both sides.

Next Difference
The system positions both windows at the next difference.

Previous Difference
The system positions both windows at the previous difference.

The starting point for the above positioning functions is always the current page. You can
therefore skip several differences simply by scrolling.

Copy to Buffer (only with Modification Assistant)
Copies the block of code at the current cursor position that was marked by the compare function
into the buffer. The comment lines inserted by the Modification Assistant are removed.

Find Marked Block (not yet implemented)
It will be possible to find a block, marked in any way, in the opposite side of the editor.

Set Window Size (narrow <-> wide)

 Use this button (or choose Settings � screen narrow <-> wide) to toggle between the two
scren sized. The default size is wide if you start the splitscreen editor using Transaction SE39,
and narrow if you start it from the ABAP Editor.

Example:

BC ABAP Workbench Tools SAP AG

Special Splitscreen Editor Functions

200 April 2001

 SAP AG BC ABAP Workbench Tools

Editor Functions

April 2001 201

Editor Functions
Some of the standard ABAP Editor functions behave differently when used in the splitscreen
editor.

Display/Change
This function reacts to the cursor position. If you call the splitscreen editor from the Modification
Assistant, only the new SAP source code may be switched to change mode.
Code read from a remote system may also not be switched to change mode.

Other Program
If you are reading a program from a remote system or have called the splitscreen editor from the
Modification Assistant, you cannot use this function.

Save
The system saves the half of the screen that is currently active.

If you were working in compare mode, the system removes the blank lines inserted by the
comparison before saving.

Sources read from a remote system cannot be saved.

Display Active/Inactive Source
You can display both versions of an object (wherever both an active and inactive version exist).

This function is not available when you call the splitscreen editor from the Modification Assistant.

Execute
You cannot execute a source from a remote system. Furthermore, you cannot execute programs
when you call the splitscreen editor from the Modification Assistant.

Generate Version
This function is not available when you call the splitscreen editor from the Modification Assistant.

Select, Copy to Buffer, Insert Buffer
These functions allow you to copy blocks of code from one window to the other.

BC ABAP Workbench Tools SAP AG

Class Builder

202 April 2001

Class Builder
The Class Builder is a tool within the ABAP Workbench that allows you to create, define, and test
global ABAP classes and interfaces.

Contents:
Introduction to the Class Builder [Page 203]

Overview of Existing Object Types [Page 212]

Maintaining Object Types [Page 213]

Defining Components [Page 222]

Defining Relationships Between Objects [Page 237]

Testing [Page 250]

 SAP AG BC ABAP Workbench Tools

Introduction to the Class Builder

April 2001 203

Introduction to the Class Builder
Purpose
The Class Builder allows you to create and maintain global ABAP classes and interfaces. Both of
these object types, like global data types, are defined in the R/3 Repository. Together, they form
a central class library and are visible throughout the system. You can display existing classes
and interfaces in the class library using the Class Browser [Page 213].

You can define local classes as well as global classes. Local classes are defined in
programs, function groups, or in a class pool of auxiliary classes within a global
class. They are only visible in the module in which they are defined.

Integration
The Class Builder is a fully-integrated tool in the ABAP Workbench that allows you to create,
display, and maintain global object types from the class library. The diagram below illustrates the
architecture of the Class Builder and the relationships between its components (including the
Class Browser).

To reach the initial screen [Page 216] of the Class Builder, choose Development � Class Builder
from the initial screen of the ABAP Workbench or enter transaction code SE24. From here, you
can either display the contents of the R/3 class library or edit a class using the Class Editor.
Once you have defined an object type, you can implement its methods. From the initial screen or
the Class Editor, you can also access the Class Builder’s test environment.

BC ABAP Workbench Tools SAP AG

Introduction to the Class Builder

206 April 2001

SE24

Class Builder

Initial screen

Class Editor

Test environment

Class Browser

ABAP Editor
Class library

Direct navigation

Data flow

Basic data

Features
Use the Class Builder to:

• Display an overview (in the Class Browser) of global object types and their relationships.

• Maintain existing global classes or interfaces.

• Create new classes and interfaces.

• Implement inheritance between global classes

• Create compound interfaces

• Create and specify the attributes, methods, and events of global classes and interfaces.

• Define internal types in classes.

• Implement methods.

• Redefine methods

• Maintain local auxiliary classes.

• Test classes or interfaces in a simulated runtime environment.

Constraints
You cannot define object types on the basis of graphical object modeling.

 SAP AG BC ABAP Workbench Tools

 Introduction to the Class Builder

April 2001 205

BC ABAP Workbench Tools SAP AG

Introduction to the Class Builder

206 April 2001

 SAP AG BC ABAP Workbench Tools

Naming Conventions in ABAP Objects

April 2001 207

Naming Conventions in ABAP Objects
Global classes and interfaces that you create in the Class Builder are stored in the class library
and administered by the R/3 Repository: they therefore have the same namespace as all other
Repository objects (database tables, structures, data elements, and so on).
It is therefore necessary to have naming conventions for object types and their components and
to use them uniformly within program development.

The following naming convention has been conceived for use within the SAP
namespace:
If you do not observe the naming conventions for object types (classes and
interfaces), conflicts will occur when the system creates persistent classes, since it
will be unable to generate the necessary co-classes.

Namespace for Components
A single namespace within a class is shared by:

� All components of the class itself (attributes, methods, events, constructors, interfaces,
internal data types in the class, and aliases)

� All public and protected components of the superclasses of the class.

Method implementation has a local namespace. The names of the local variables
can obscure those of class components.

Naming Convention
The naming convention has been kept as general as possible to avoid adversely influencing the
naming of objects.

General Remarks
When you choose names for development objects, you should:

� Use English names

� Use glossary terms when possible

For example, CL_COMPANY_CODE instead of BUKRS

� In compound names, use the underscore character (_) as a separator. Since names are not
case-sensitive, this is the only character that you can use to separate names.

Example: CL_COMPANY_CODE, CL_GENERAL_LEDGER_ACCOUNT

� Names should describe the action, not the implementation of the action.

Example: PRINT_RECTANGLE, not RECTANGLE_TO_SPOOL

Conventions for Object Types

BC ABAP Workbench Tools SAP AG

Naming Conventions in ABAP Objects

208 April 2001

Class and interface names in the class library belong to the same namespace as data elements,
tables, structures, and types. They are maintained centrally in table TADIR.

Class in the class library CL_<class name>
The class name should be made up of singular nouns.

CL_COMPANY_CODE, CL_GENERAL_LEDGER_ACCOUNT

Interfaces in the class library IF_<interface name>
The same naming convention applies to interfaces as to
classes.

IF_STATUS_MANAGEMANT, IF_CHECKER

Local classes in programs
(recommendation)

LCL_<class name>
The class name should be made up of singular nouns.

LCL_TREE_MANAGEMENT

Local interfaces in programs
(recommendation)

LIF_<interface name>
The sane naming convention applies to interfaces as to
classes.

LIF_PRINTER

Recommended naming conventions are not compulsory. However, if you use
prefixes for these class and interface names, you should use those listed above.

Conventions for Components

Method name <method name>
Method names should begin with a verb:

GET_STATUS, CREATE_ORDER, DETERMINE_PRICE

Events <event name>
Event names should have the form
<noun>_<participle>:
BUTTON_PUSHED, COMPANY_CODE_CHANGED,
BUSINESS_PARTNER_PRINTED

Local type definitions within a
class
(recommendation)

TY_<type name>
TY_INTERNAL_TYPE, TY_TREE_LIST

 SAP AG BC ABAP Workbench Tools

Naming Conventions in ABAP Objects

April 2001 209

Data definitions (variables) <variable name>
When you name variables within a class (CLASS-DATA or
DATA), avoid using verbs at the beginning of the name (to
avoid conflicts with method names).
LINE_COUNT, MARK_PRINTED, MARK_CHANGED,
STATUS

Data definitions (constants)
(recommendation)

CO_<constant name>
CO_MAX_LINE, CO_DEFAULT_STATUS,
CO_DEFAULT_WIDTH, CO_MAX_ROWS

Recommended naming conventions are not compulsory. However, if you use
prefixes for these class and interface names, you should use those listed above..

Concrete Method Descriptions

Attribute access SET_<attribute name>, GET_<attribute name>
Methods that access attributes of any kind should be
prefaced with GET_ or SET_.

GET_STATUS, SET_USE_COUNT

Event handler methods ON_<event name>
Methods that handle events should begin with ON, followed
by the name of the event that they handle.

ON_BUTTON_PUSHED,
ON_BUSINESS_PARTNER_PRINTED

Methods that perform type
conversions

AS_<new type>
AS_STRING, AS_ISOCODE

Methods that return a Boolean
value
These methods may not return
any exceptions.

Recommendation: Use SPACE
and 'X' to represent false and true
respectively.

IS_<adjective>
IS_OPEN, IS_EMPTY, IS_ACTIVE

Check methods CHECK_<objective>
CHECK_AUTHORIZATION, CHECK_PROCESS_DATE

BC ABAP Workbench Tools SAP AG

Naming Conventions in ABAP Objects

210 April 2001

Local Conventions Within Methods
For parameters
The parameters are regarded from the point of view of the method that implements them:

IMPORTING parameters IM_<parameter name>

EXPORTING parameters EX_<parameter name>

CHANGING parameters CH_<parameter name>

RESULT RE_<result>

Using prefixes is NOT compulsory. However, if you do use them, use those listed
above.

For exceptions
The following table contains a series of possible exception names, that can also be used
generically (for example, NOT_FOUND could also be used as DATE_NOT_FOUND)

EXCEPTION Meaning

ACTION_NOT_SUPPORTED The requested action or function code is not supported.

CANCELLED If a method uses a dialog to find out what has to be dome (for
example, a list of choices), and the user chooses "Cancel", you
can set this exception.

EXISTING A new object that you want to create already exists in the
database.

FAILED The method could not be executed because of the current
environment. This exception is intended for cases where the
method cannot be executed because of variable system
circumstances.

..._FAILED Part of the method could not be completed because of the
current environment. (OPEN_FAILED, CLOSE_FAILED,
SELECTION_FAILED, AUTHORIZATION_FAILED)

FOREIGN_LOCK Data is locked by another user.

INCONSISTENT Object data in the database is inconsistent.

..._INCONSISTENT The component data for … of an object in the database is
inconsistent.

INVALID The object data entered is incorrect (for example, company
code does not exist). Compare NOT_QUALIFIED.

..._INVALID The component data entered for an object is incorrect. Compare
NOT_QUALIFIED.

 SAP AG BC ABAP Workbench Tools

Naming Conventions in ABAP Objects

April 2001 211

EXCEPTION Meaning

INTERNAL_ERROR Last resort. Only use this exception if you cannot be more
precise about the nature of the error.

NOT_AUTHORIZED The user does not have the required authorization.

NOT_CUSTOMIZED The object requested is not correctly customized.

..._NOT_CUSTOMIZED The component … of the requested object is not correctly
customized.

NOT_FOUND Unable to find the requested object.

..._NOT_FOUND Unable to find component … of the requested object.

NOT_QUALIFIED The combination of input parameters is insufficient to run the
method. Compare INVALID.

..._NOT_QUALIFIED One parameter of the method is not qualified.

NUMBER_ERROR Error assigning a number.

SYSTEM_ERROR This exception is set if the Basis system returns an unexpected
error message.

BC ABAP Workbench Tools SAP AG

Overview of Existing Object Types

212 April 2001

Overview of Existing Object Types
Use
Use this function to:

� Display the definitions of classes and interfaces stored in the function library.

� Display further information about object type components such as methods and parameter
definitions.

Activities
To display an overview of existing object types in the class library, use the Class Browser [Page
213].

You can also use the Repository Information System. From the initial screen of the ABAP
Workbench, choose Overview � Information system. If you then choose ABAP Objects, you can
open all or part of the class library.

 SAP AG BC ABAP Workbench Tools

Class Browser

April 2001 213

Class Browser
Use
Use the Class Browser to display global ABAP classes and interfaces or business object types
from the class library.

The Class Browser enables you to:

� Display an overview of existing classes, interfaces, and business object types.

� Display the relationships between object types.

� Switch from the overview to maintain an individual object type.

Integration
The Class Browser is an integrated part of the Class Builder [Page 202]. You can start it either
from the Class Builder, or using Transaction CLABAP.

Features
Display
There is a range of preconfigured views that you can use to display object types. You can also
set a selection of filters to meet particular display requirements.

� All classes
Displays all classes and interfaces in the R/3 class library. The display is based on the R/3
component hierarchy.

� Business objects
Displays business object types from the R/3 class library.

� Other settings
You can adapt the display further by setting filters. There are three separate selection
criteria:

1. Object types
You can select object types by type, status, and transport attributes.

2. Relationships
You can select object types based on the relationships between them.

3. Other
You can use this filter to set whether the object types should be selected according to the
component hierarchy or not.

Maintenance
You can switch from the display to maintain an object type by double-clicking it. The system
starts the Class Editor of the Class Builder. You can then switch to change mode and modify the
object type.

BC ABAP Workbench Tools SAP AG

Class Browser

214 April 2001

Restrictions
You cannot create new object types from the Class Browser.

 SAP AG BC ABAP Workbench Tools

Creating Object Types

April 2001 215

Creating Object Types
Features
When you create classes and interfaces, you only specify their basic data. This definition
produces a table entry for the object type in the ABAP Dictionary. Once you have defined the
basic data, you may go on to work on the object type components in more detail. Once you have
entered the basic data, the system automatically opens the Class Editor [Page 224].

Activities
To start the Class Builder, enter Transaction SE24, or choose Development � Class Builder
from the initial screen of the ABAP Workbench.

� To maintain an existing object, enter the name of the object type and choose Display or
Change.

� To create a new class, refer to Creating New Classes [Page 218].

� To create a new interface, refer to Creating New Interfaces [Page 220].

BC ABAP Workbench Tools SAP AG

Initial Screen

216 April 2001

Initial Screen
Procedure
1. Start the ABAP Workbench.

2. Choose Development � Class Builder (Transaction SE24) to start the Class Builder.
The initial screen appears:

3. Enter the name of the object type that you want to display, change, create, or test.
The name can be up to 30 characters long.

4. Select the relevant Object type:

Class The definition and implementation of global classes and their components:
Attributes, methods, events, and internal data types within the class. You
can extend the class definition using interfaces. In this case, the class
must implement all of the methods that are declared in the interface.

Interface The definition of interfaces that describe a point of contact with an object.
Interfaces are independent of classes. Like classes, they can contain
attributes, methods, and events. However, unlike classes, they do not
implement them. You can only use an interface once you have
implemented it in a class.

5. Choose the required function: Display, Change, Create, or Test.

 SAP AG BC ABAP Workbench Tools

Initial Screen

April 2001 217

Other Functions
� You can start the Class Browser [Page 213]. This allows you to display the existing classes

and interfaces in the class library.

� The Check function allows you to check a class or interface for syntax errors.

BC ABAP Workbench Tools SAP AG

Creating New Classes

218 April 2001

Creating New Classes

For general information about ABAP classes, refer to the classes [Ext.] section of the
ABAP User’s Guide.

Prerequisites
When you name your class, observe the naming conventions for global ABAP classes.

Procedure
To create a new class from the initial screen of the ABAP Workbench:

1. Under Object type name, enter the name of the new class, not forgetting to observe the
naming conventions.

2. Select object type Class.

3. Choose Create.

The Create Class dialog box appears with the name of the class:

4. You define the basic data by entering the following information:

- Class

Name of the new class.

- Description

A short text describing the new class.

- Instantiation

The default setting for all classes is Public. This means that any user can instantiate the
class using CREATE OBJECT. If you specify Protected, only the class itself or its
subclasses can instantiate the class. If you choose Private, only the class can instantiate
itself (using one of its own methods).
If you select Abstract, you create a class that cannot be instantiated at all. Abstract

 SAP AG BC ABAP Workbench Tools

Creating New Classes

April 2001 219

classes serve as templates for subclasses, and can only be accessed using their static
attributes or one of their subclasses.
With these options, you can restrict the instantiation conditions further. For example, they
enable you to fulfil conditions for administering persistent objects, where you must be
able to guarantee that an object is unique.

- Inheritance

If you select Final, you define a final class. A final class is the end of an inheritance
hierarchy, since it may not have any subclasses of its own.
If you make an abstract class final, you will only be able to access its static components.
.
.

- Persistent

- Modeled

If you select this checkbox, the system will not define the subclass in the class pool. You
will not be able to address it at runtime or test it. In future, this option will allow you to
design classes from a graphical model without having to implement them.

 - Create inheritance icon

When you choose this function, the Inherits from dialog box appears. Here, you can
enter the name of a superclass. The superclass can be any class from the class library
that is not defined as final.

5. Choose Save.

The Create Object Directory Entry dialog box appears.

6. Enter the development class.

7. Choose Save.
The Class Editor [Page 224] appears. From here, you can define its components and include
interfaces in it.

Result
You have now defined a new class and entered its basic data. The system creates a class pool
for the new class (as long as you did not define it as Modeled).

A class pool contains the definition of a single global class. They are similar to
function groups in that you can define local auxiliary classes and local types.

BC ABAP Workbench Tools SAP AG

Creating New Interfaces

220 April 2001

Creating New Interfaces

For general information about ABAP interfaces, refer to the Interfaces [Ext.] section
of the ABAP User’s Guide.

Prerequisites
When you name your interface, remember to observe the naming conventions for global ABAP
interfaces.

Procedure
To create a new interface from the initial screen of the ABAP Workbench:

1. Enter the name of the interface, remembering to observe the naming convention

2. Select object type Interface.

3. Choose Create.
The Create Interface dialog box appears.

4. Enter the following information:

 - Description

A short descriptive text for the new interface.

- Modeled

If you select this option, no interface pool is generated for the interface, and you cannot
access it at runtime.

In future, this option will allow you to design interfaces based on a graphical model.

5. Choose Save.
The Create Object Directory Entry dialog box appears.

6. Enter the development class.

7. Choose Save.
The methods screen of the Class Editor [Page 224] appears. From here, you can define the

 SAP AG BC ABAP Workbench Tools

Creating New Interfaces

April 2001 221

components of the interface. Only after you have defined the interface can you include it in
class definitions.

Result
You have created a new interface along with its basic data in the ABAP Dictionary. The system
generates an interface pool for the interface, as long as you did not create the interface as
Modeled.

BC ABAP Workbench Tools SAP AG

Defining Components

222 April 2001

Defining Components
Use
You use this function:

� To define classes or interfaces by assigning components to them.

� To implement the methods of classes.

� To add interfaces to classes and implement their methods in the class.

� To change the existing definition and implementation of classes.

� To define local data types within classes.

Prerequisites
You must already have created a class or interface as described under Maintaining Object Types
[Page 213].

Features
Assign Components by Defining:
� Attributes

� Methods

� Events

� Local types in classes

Note that these components (apart from interfaces) are all stored in the same
namespace. Consequently, they must all have different names.

� Interfaces

Methods
� Define method parameters

� Define method exceptions

� Implement methods

Interfaces
� Assign interfaces to classes

� Implement interface methods in classes

Activities
You define and implement object types in the Class Editor [Page 224].

To open the Class Editor:

 SAP AG BC ABAP Workbench Tools

Defining Components

April 2001 223

� Create an object type. The Class Editor starts automatically.

� Choose Change from the initial screen of the Class Builder.

� Double-click an entry in the Class Browser and switch to change mode.

BC ABAP Workbench Tools SAP AG

Class Editor

224 April 2001

Class Editor
Implementation Considerations
The Class Editor is the part of the Class Builder in which you actually define the attributes,
methods, events, and user-defined data types that make up the components of a class.

Integration
The class or interface components that you define in the Class Editor are saved in the class
library. You can branch directly from the Class Editor to the ABAP Editor to write a method
implementation.

Features
Basic Functions
The basic functions involve maintaining components, that is:

� Creating attributes [Page 226]

� Creating methods [Page 228]

� Creating events [Page 233]

� Implementing methods [Page 232]

� Creating interfaces in classes [Page 239]

� Creating internal types in a class [Page 235]

 SAP AG BC ABAP Workbench Tools

Class Editor

April 2001 225

Other Functions
� The Local classes function allows you to maintain local auxiliary classes in the class pool of

the global class.

� The Aliases function allows you to define short component names.

� The Documentation function allows you to document classes or interfaces and their
components.

� The Goto menu allows you to jump to coding extracts.

BC ABAP Workbench Tools SAP AG

Creating Attributes

226 April 2001

Creating Attributes
Attributes contain data. They define the state of an object.

Prerequisites
You must already have created the internal data types in the class to which you want to refer
when you create the attributes. For further information, refer to Creating Internal Types in
Classes [Page 235].

Procedure
1. Start the Class Editor in change mode.

2. Choose Attributes.

3. To create an attribute, enter the following:

- Attribute
A unique name that identifies the attribute. Remember to observe the naming conventions in
ABAP Objects [Page 207].

- Type
You can specify an attribute as a constant, an instance attribute, or a static attribute (that
is shared by all instances of the class).

- Visibility
Defines the visibility of attributes to users of the class. If an attribute is public, it is assigned
to the public section of the class and can be addressed by any user. Remember that public
attributes form part of the external point of contact to the class, and as such stand in the way
of full encapsulation.
Protected attributes are visible in and can be addressed by all subclasses of the class.
Private attributes are only visible in and can only be addressed by the defining class. In
particular, they are not visible in the subclasses of the class.

- Modeled
If this option is set, the system does not enter the component in the class pool and the
component cannot be addressed at runtime.

- Read Only
If this option is set, users cannot change this attribute.

- Typing method
ABAP keyword to specify the type reference. You can use TYPE, LIKE or
Type Ref To (for class references).

- Reference type
This may be any elementary ABAP type (including generic types) or an object type (classes
and interfaces).

- Description
Short description of the component

 SAP AG BC ABAP Workbench Tools

Creating Attributes

April 2001 227

- Initial value
If the attribute is a constant, you must specify an initial value.

4. Repeat steps 1 to 3 for each attribute.

Example:

5. Save your entries.

Result
You have now created a set of attributes. The system generates the corresponding ABAP code
in the definition part of the class or interface pool for all of the attributes except those for which
you set the Modeled option.

BC ABAP Workbench Tools SAP AG

Creating Methods

228 April 2001

Creating Methods
Methods describe how an object behaves. You implement them using functions defined within
classes. They are operations that change the attributes of a class or interface. There are two
types of methods: Instance methods, which always refer to a particular class instance, and
static methods, which are shared by all class instances. Static methods can only address static
attributes.

Prerequisites
You must already have created a class or interface. It is useful if you have already created the
attributes of the class, since you can branch directly from a method definition in the Class Builder
to its implementation.

The following description assumes that you are familiar with the principles of ABAP Objects.

Procedure
1. Start the Class Editor [Page 224] in change mode.

2. Choose Methods.

3. To create a method, enter the following information:

- Methods
A unique name to identify the method. Remember to observe the Naming Conventions for
ABAP Objects [Page 207].

- Type
Specifies the type as an instance method or a static method (not instance-specific).

- Visibility
Defines the visibility of the method for the users of your class. If the method is public, it is
assigned to the public section of the class, and can be called by any user. If you make the
method protected, it is visible to and can be used by the class itself and any of its
subclasses. If the method is private, it is only visible in and available to the class itself.
Private methods do not form part of the external point of contact between the class and its
users.

- Modeled
If you select this option, the system does not enter the method in the class pool. You cannot
then address it at runtime.

 - Description
Short description of the method.

4. Repeat steps 1-3 for any further methods.

If you create a constructor or class constructor method, it is assigned the predefined name
CONSTRUCTOR or CLASS_CONSTRUCTOR respectively. The Class Builder also
predefines certain other attributes.

 SAP AG BC ABAP Workbench Tools

Creating Methods

April 2001 229

Example:

5. Save your entries.

Result
You have now created methods for an object type. These are included in the definition part of the
class or interface, that is, generated into the corresponding class pool or interface pool.

Before you can implement the methods, you must create your parameters and exceptions. For
details of how to do this, refer to Creating parameters and exceptions [Page 230].

BC ABAP Workbench Tools SAP AG

Creating Parameters and Exceptions

230 April 2001

Creating Parameters and Exceptions
You define methods in a similar way to function modules. Firstly, you create interface parameters
and exceptions. Then, you code (implement) the method. Methods can have input parameters -
the importing and changing parameters, and output parameters - their exporting, changing,
and returning parameters.

Prerequisites
� You must already have created the methods, attributes, and events of a class or interface.

� You must have opened the corresponding class or interface in change mode in the class
editor and chosen either Methods or Events.

When you redefine inherited methods, you may not change the interface parameters
(signature) nor add new parameters.

Procedure
Creating Parameters
1. Position the cursor on the name of the method or event.

2. Choose Parameters.

3. To create parameters of methods or events, enter the following information:

- Parameter
A unique name for the parameter. Ensure that you observe the naming conventions [Page
207] for method parameters in ABAP Objects

- Type
As in function modules, a parameter can have the type, importing, exporting, changing, or
returning.
Note the following special rules:
If you use changing parameters, you cannot use returning parameters. If you use returning
parameters, you cannot use exporting or changing parameters.
Constructor methods may only have importing parameters.

- Pass Value
Unlike function modules, the default way of passing values to a method is by reference.
However, you can force the system to pass a parameter by value by selecting this option.
This is only possible for importing, exporting, and changing parameters. Returning
parameters can only be passed by value. The Class Builder automatically checks against this
rule.

- Optional
If you select this option, the parameter does not have to be specified when the method is
called.

- Typing method

 SAP AG BC ABAP Workbench Tools

Creating Parameters and Exceptions

April 2001 231

ABAP keyword defining the type reference. You can use Type, Like, and Type ref to.

- Reference type
This may be any elementary ABAP type (including generic types) or object type (class or
interface). For further information, refer to the Data Types [Ext.] section of the ABAP
Programming Guide.
You can specify the type of a parameter of a private or protected method using an internal
data type defined in the class.

- Default value
Default value for the parameter

- Description
A short description of the parameter.

Creating Exceptions
1. Position the cursor on the name of the corresponding method.

2. Choose Exceptions.

3. To define exceptions for methods, enter the following information:

- Exception
A name for the exception. Remember to observe the naming conventions [Page 207] for
exceptions in ABAP Objects.

- Description
A short description of the exception.

Result
You have now created the interface parameters and exceptions for a method. You can now
implement the method [Page 232].

BC ABAP Workbench Tools SAP AG

Implementing Methods

232 April 2001

Implementing Methods
Prerequisites
You must have created the methods and attributes of the class or interface. If you want to
implement the methods of interfaces, the interfaces must have been listed in the class definition.
You must have created any parameters and exceptions required by the methods.

Procedure
1. Start the Class Editor [Page 224] in change mode.

2. Choose Methods.

3. Position the cursor on the name of the relevant method.

4. Double-click, or choose Source code.
The ABAP Editor appears, containing an empty statement block between the METHOD and
ENDMETHOD statements.

5. Write the ABAP code for the method. .

You can also create text elements in the source code using forward navigation.

6. Check the syntax of your ABAP code.

7. Save the code.

8. Choose Back to return to the class editor.

9. Document the method by choosing the corresponding function from the Methods display.

 SAP AG BC ABAP Workbench Tools

Creating Events

April 2001 233

Creating Events
Objects can indicate that their state has changed by triggering a method. You can define events
in both classes and interfaces, which you can then trigger from within a method using the RAISE
EVENT statement. Each class (or interface) that is going to handle the corresponding event must
implement a relevant handler method, and register it using the SET HANDLER statement. When
an event occurs, the system calls all of the handler methods registered for that event.

Like method definitions, events have a parameter interface. The only difference is that events
may only have EXPORTING parameters.

Prerequisites
You must already have created the class or interface.

The following description assumes that you are familiar with the principles of ABAP Objects.

Procedure
1. Start the Class Editor [Page 224] in change mode.

2. Choose Events.

3. Enter the following information:

- Event
A unique name to identify the event.

- Type
Specifies the event as an instance event or a static event.

-Visibility
Defines the visibility of the events as public, protected, or private.

- Modeled
If you select this option, the system does not enter the event in the class pool. You will not be
able to access the component at runtime.

- Description
Short description of the event.

4. Repeat steps 1 - 3 for any further events.

5. Save your entries.

BC ABAP Workbench Tools SAP AG

Creating Events

234 April 2001

Result
You have now created events for your object type. The events are listed in the declaration part of
the class or interface after the EVENTS statement.

You can specify events further by giving them EXPORTING parameters. For the procedure, refer
to Creating parameters and exceptions [Page 230] and Implementing methods [Page 232].

For further information about event handling within ABAP Objects, refer to the syntax
documentation in the ABAP Editor (for example, for the RAISE EVENT statement).

 SAP AG BC ABAP Workbench Tools

Creating Internal Types in Classes

April 2001 235

Creating Internal Types in Classes
Prerequisites
For up to date information about data types, classification, visibility, refer to the data types [Ext.]
section of the ABAP User’s Guide.

You must not create public data types within global classes.

Procedure
1. Start the Class Editor [Page 224] in change mode.

2. Choose Types.

3. To create an internal type within a class, enter the following information:

- Type
A unique name to identify the type. The recommended naming convention for internal types
in classes is to use the prefix TY_.

- Visibility
Defines the visibility. If you make the type private, it can only be accessed from within the
class itself. If the type is protected, it is also visible to the subclasses of the class.

- Modeled
If you select this option, the system does not enter the type in the class pool. You will not be
able to address the component at runtime.

- Typing method
ABAP keyword indicating the reference type. This can be one of TYPE, LIKE, or TYPE REF
TO (for class references).

- Reference type
You can use any elementary ABAP type (including generic types) or object type (classes and
interfaces).

- Description
Short description of the type.

4. Repeat steps 1-3 for any further types.

5. Save your entries.

6. If you need to qualify an internal data type in a class further (for example, to specify the field
length of a character field), choose Direct type entry. Note that this only makes sense if you
have not selected Only modeled.

BC ABAP Workbench Tools SAP AG

Creating Internal Types in Classes

236 April 2001

The contents of the class pool appear for the corresponding visibility section.

7. Modify the data type

8. Check the syntax.

9. Save your entries.

10. Choose Back to return to the Internal types display.

Result
You have not created internal data types within your class. You can use these in your class, and,
if they are defined as protected, also in its subclasses. You can define private and protected
attributes and interface parameters using the TYPE addition.

 SAP AG BC ABAP Workbench Tools

Defining Relationships Between Object Types

April 2001 237

Defining Relationships Between Object Types
You can define the following relationships between two object classes:

� Inheritance between two classes

� Extending the functions of a class by implementing interfaces. This is a relationship between
classes and interfaces

� Compound interfaces. This is a relationship between interfaces.

Characterization
� Inheritance is a relationship between classes. It allows you to derive a new class from the

definition of an existing class. The new class is called a subclass, the existing class is its
superclass. Inheritance is used to create a subclass that is more specialized than its
superclass. You can add new components to a subclass, and also redefine the methods that
it inherits. The result of inheritance is a class hierarchy. The Class Builder allows you to
create a class hierarchy very simply. You can create a subclass for any class that is not
defined as final, and can also define a direct superclass for a class that was itself not derived.

� Interfaces allow you to extend a class definition. When a class implements an interface, all of
the interface components appear as components of the class. You can access these
components either using a class reference or an interface reference.
Interfaces allow you to work with several different classes in a uniform way. The actual
implementation of the interface components takes place in the classes. Consequently,
interfaces provide a way of separating the definition and implementation of components.

� Interfaces can contain attributes, methods, and events, but also other interfaces. Classes
that implement a compound interface must also implement all of its components.
Compound interfaces are a specialization of their component interfaces.

Features
� Creating subclasses

� Redefining inherited methods

� Creating superclasses

� Assigning interfaces to classes

� Defining and implementing interface methods within a class definition

� Creating compound interfaces

Activities
Implementing Interfaces in Classes [Page 239]

Creating Subclasses [Page 241]

Nesting Interfaces [Page 245]

BC ABAP Workbench Tools SAP AG

Defining Relationships Between Object Types

238 April 2001

 SAP AG BC ABAP Workbench Tools

Implementing Interfaces in Classes

April 2001 239

Implementing Interfaces in Classes
Interfaces are extensions to class definitions and provide a uniform point of contact for objects.
Unlike classes, interfaces cannot be instantiated. Instead, classes implement interfaces by
implementing all of their methods. You can then address them using either class references or
interface references.

Each class can implement interfaces differently by implementing different coding for its methods.
Interfaces thus form the basis for polymorphism in ABAP Objects.

Prerequisites
You must have created both the class and interface in the Class Builder.

Procedure
1. In the Class Builder, open the Class Editor in change mode.

2. Choose Interfaces.

3. To add an interface to a class, enter the following information:

- Interface
The interface name. When you press Enter, the system checks that the interface exists in the
class library. You can use the possible entries help to display a list of all interfaces.

- Modeled
If you have selected this option, the system does not enter the interface in the class pool.
You cannot access it or its components at runtime.

Repeat steps 1-3 for any further interfaces.

Example:

4. If the interface is nested, the system displays all of the component interfaces in the hierarchy
after it has checked your input.

5. Save your entries.

Result
You have added one or more interfaces to the components of the class. The interfaces are listed
in the definition part of the class in the class pool under the INTERFACES statement.

BC ABAP Workbench Tools SAP AG

Implementing Interfaces in Classes

240 April 2001

You must now implement all of the methods listed in the interface within the definition part of the
class declaration. For further details, refer to Implementing methods [Page 232].

The components defined in the interface (attributes, methods, and events) appear in the class in
the from <interface name>~<component name>. This ensures that no naming conflicts can occur
with class components.

 SAP AG BC ABAP Workbench Tools

Creating Subclasses

April 2001 241

Creating Subclasses
Use
Inheritance allows you to derive classes from other classes. The new class contains a greater
range of more specific functions than its superclass. You can do this by adding new components
to the subclass or redefining methods inherited from the superclass.

Procedure
To create a new direct subclass from an existing class in the class editor:

1. Choose Basic data for the current class.

2. Choose Subclass.

The Create Class dialog box appears.

3. Enter the following details for the subclass definition:

- Class

Name of the subclass you want to derive.

- Inherits from

Enter any global class that is not defined as final.

- Description

Enter a descriptive short text for the subclass.

- Instantiation

The default setting for all classes is public. This means that all users can instantiate the
class using CREATE OBJECT. If you specify protected, only inherited classes or the
class itself can instantiate the class. If you specify private, the class can only be
instantiated by itself.
These options allow you to restrict the instantiation of the class. For example, it provides
the basis for managing persistent objects, where you have to ensure that objects are
unique.

- Inheritance

If you specify Abstract, you can define an abstract class. Abstract classes cannot be
instantiated, but you can use them as a template for further subclasses. You can only
access an abstract class using its static components or subclasses.
The Final option defines a final class. This class forms the end of the inheritance
hierarchy, since final classes cannot have subclasses.
If you define a class as both abstract and final, you can only access its static
components.

- Only modeled

If you select this option, the subclass is not included in the class pool. You cannot access
the class at runtime.

4. Choose Save.

The Create Object Directory Entry dialog box appears.

BC ABAP Workbench Tools SAP AG

Creating Subclasses

242 April 2001

5. Enter the development class.

6. Choose Save.

Result
You have now created a direct subclass for a class. The subclass inherits all components from
the public and protected sections of the superclass, apart from the constructor methods. The
interfaces implemented in the superclass are also implemented and visible in the subclass. You
can display the inherited components of the subclass by selecting With inherited.
You can now specialize your class. For further information, refer to Extending Subclasses [Page
243].

 SAP AG BC ABAP Workbench Tools

Extending Subclasses

April 2001 243

Extending Subclasses
Changes to subclasses are additive, that is, you cannot delete a component from a class if it was
inherited from a superclass. However, you can extend a subclass as follows:

� By adding new components

� By redefining inherited methods

You can only redefine instance methods. Attributes, class methods, and other inherited
components of a subclass cannot be redefined.
Furthermore, the methods that you want to redefine may not have been defined as final
methods in the superclass. Constructor methods may not be redefined, since they are
implicitly final.
A method redefinition may only extend to a new implementation of the method. The
signature (names and types of the parameters) may not be changed. The interface of
the redefined method must remain the same as that of the original method in the
superclass.

Procedure
Adding New Components
You can define new components in all three visibility sections (public, protected, and private) of a
subclass. Since both inherited and new components belong to the same namespace, you must
ensure that all components in the class have unique names.
See also:

Creating Attributes [Page 226]

Creating Methods [Page 228]

Creating Events [Page 233]

Redefining Methods
To redefine an inherited method in a subclass from the class editor:

1. Display all methods of the subclass (select the With inherited checkbox).

The system displays the inherited methods of all subclasses.

2. Double-click the method you want to redefine.

A message appears, informing you that the method is already implemented in the
superclass.

3. Choose Continue.

The ABAP source code of the original method implementation appears.

4. Switch to change mode and reimplement the method.

5. Check the syntax.

6. Save your source code.

7. Document the newly-defined method by choosing the Documentation function from the
Methods display.

BC ABAP Workbench Tools SAP AG

Extending Subclasses

244 April 2001

Result
You have now extended the class, and your new components are visible, as well as the public
and protected components of the superclass. Redefined methods appear in a different color in
the class editor.
If you redefine a method in a subclass, the corresponding original method in the superclass
remains unchanged.

You can access all visible components in the subclass in the same way - inherited components
can also be addressed using their local name. If, however, you need to address components of
the direct superclass, you can use the pseudoreference SUPER.

For further information, refer to the section on visibility of components.

 SAP AG BC ABAP Workbench Tools

Nesting Interfaces

April 2001 245

Nesting Interfaces
ABAP Objects supports nested, or compound interfaces. A compound interface contains one or
more interfaces as component interfaces. These may also contain interfaces as components,
thus allowing multiple-level nesting of interfaces.
Interfaces that do not contain other interfaces are referred to as simple interfaces.

Use
A compound interface is a specialization of its component interfaces. Component interfaces, as
well as having their individual uses, can be combined to specify a new interface.

Prerequisites
All of the component interfaces must already exist in the class library.

Procedure
1. In the Class Builder, open the class editor.

2. Choose Interfaces for the relevant interface (making sure you are in change mode).

3. Under Includes, enter the names of the component interfaces.
If you select the Only modeled option, the system does not create a corresponding entry in
the class pool.

4. Press Enter.
The system checks your entry against the class library, and inserts the short descriptions of
the component interfaces.

5. Save your entries.

Result
All of the component interfaces that you entered belong to the same nesting level. When a class
uses a compound interface, it must implement all methods of all component interfaces.
The component interfaces are implemented equally, regardless of their nesting level ("flat
hierarchy"). You access their components using their original names, that is, the form:

<Interface name>~<component>

BC ABAP Workbench Tools SAP AG

Activating Classes and Interfaces

246 April 2001

Activating Classes and Interfaces
Significance of Activation
When you create runtime instances, the system always uses active sources. You should
remember this when instantiating classes (CREATE OBJECT statement), since this always
refers to the activated class. All components of the corresponding global class that you want to
access in the calling program must be activated explicitly.

Components of Global Classes
All global classes have an entry in table TADIR. The corresponding transport object for a class
has the name R3TR CLAS <class name> and contains a range of components, each of which
is a separate transport unit. Inactive class components appear in your worklist.

 SAP AG BC ABAP Workbench Tools

Activating Classes and Interfaces

April 2001 247

BC ABAP Workbench Tools SAP AG

Activating Classes and Interfaces

248 April 2001

TADIRTADIR

R3TR CLAS <class name>

CLSD

CPRO

CPUB

CPRI

CREP

METH

REPT

MAPP

Basic data (including inheritance)

Public components

Protected components

Private components

Local type declarations

Method implementations

Text elements

Mapping data

� The basic data and public components of a class cannot be activated separately.

� Only the basic data and public, protected, and private sections of a class affect the status
display in the class editor. If you activate the entire transport object and then change a
method implementation, the status remains active.

Components of Global Interfaces
The transport object for an interface has the name R3TR INTF <interface name>. It contains a
single object with the name INTF.

When you activate a class that implements an interface, you must ensure that the
interface has already been activated. Otherwise, the public section of the class
contains a syntax error.

Status Display in the Class Builder
The current status of a class or interface is always displayed in the class editor. It is determined
by the:

� Runtime relevance (Implemented � only modeled)

 SAP AG BC ABAP Workbench Tools

Activating Classes and Interfaces

April 2001 249

� Database state (Revised � Saved)

� Activation (inactive�active)

There are eight possible statuses of classes or interfaces that can appear in the class editor:

Activate

Change

Change

Save

Implemented/inact. Implemented/inactive(revised) Impl./active

Only modeled/inact. Only modeled/inact.(revised) Only modeled/act.

Save

Implemented/active(revised)

Only modeled/act.(revised)

BC ABAP Workbench Tools SAP AG

Testing

250 April 2001

Testing
Use
Use the test environment to test class components in the Class Builder and business object
components in the Business Object Builder. The system dynamically generates a test program
that simulates the execution of various ABAP statements.

You can only test the public components of objects.

Features
Use the test environment to

� Display access to the attributes of a class

� Simulate changes to the attributes of a class

� Simulate method calls

� Test the event handling using a standard handler

� Test an interface view of an object

Contents
Starting the Test Environment [Page 251]

Creating an Instance [Page 253]

Testing Attributes [Page 255]

Testing Methods [Page 257]

Testing Event Handling [Page 259]

Testing an Interface View of an Object [Page 260]

 SAP AG BC ABAP Workbench Tools

Testing a Class

April 2001 251

Testing a Class
Requirements
Before you can test a class (object type), you should run the syntax check for it. If there are any
syntax errors, you cannot start the test environment.

Procedure
You can use the test environment for classes in the Class Builder and for object types in the
Business Object Builder.

In the Class Builder
1. Start the Class Builders [Page 202] (Transaction SE24).

2. Enter the name of the class.

3. Choose Test.

Alternative: Select the class that you want to test using the Repository Browser and use forward
navigation to open the Class Editor [Page 224]. Then choose Class � Test.

In the Business Object Builder
1. Start the Business Object Builder (Transaction SWO1).

2. Enter the name of the object type.

3. Choose Test.

Alternative: Choose the object type that you want to test from the Business Object Repository
and double-click to display it. Then choose Test.

Result
The system opens the test environment and displays the class in tree form.

Example:

BC ABAP Workbench Tools SAP AG

Testing a Class

252 April 2001

 SAP AG BC ABAP Workbench Tools

Creating Instances

April 2001 253

Creating Instances
You instantiate a class using the ABAP statement CREATE OBJECT. This calls the constructor
for the instance. The constructor can contain parameters that you may have to supply with
values.

In the test environment, the system automatically instantiates classes that have no
static attributes or methods.

Prerequisites
You must have started the test environment [Page 251].

Procedure
1. Choose Instance.

If the relevant constructor has parameters, a dialog box appears.

2. Enter valid values for the constructor parameters.

Example:

3. To create an instance, choose Instance.

Result
You have now created an instance (test object) for the class you want to test. Test object ->
appears in the first line. The object ID is displayed next to the class name.

Example:

BC ABAP Workbench Tools SAP AG

Creating Instances

254 April 2001

 SAP AG BC ABAP Workbench Tools

Testing Attributes

April 2001 255

Testing Attributes
When you have created a test object, you can address a container for attributes. This can be
simulated for classes. You can both display and change the attributes.
The attribute display contains the following types of attribute field:

� Fields for direct input

� Lengthened fields

� Read only fields

� Complex data fields (tables)

� Attributes that are themselves object references.

Prerequisites
You must have created an instance of the class you want to test. See Creating an instance [Page
253].

Procedure
1. In the Attributes section of the object display, select the attribute that you want to test.

Example:

2. Click the icon that corresponding to the data type of the attribute.
If the field is an input field, you can change the attribute values. If it is an object reference,
the relevant object is displayed.

3. If the field is an object reference, repeat step 2.

Example:

BC ABAP Workbench Tools SAP AG

Testing Attributes

256 April 2001

Result
You have now tested the access to the attributes of a class. The access is displayed in the first
line of the object display.

 SAP AG BC ABAP Workbench Tools

Testing Methods

April 2001 257

Testing Methods
You can test access to methods of a class using a test object. If the method has no export
parameters, the system does not display a result screen.

Prerequisites
You must have instantiated the class you want to test (see Creating an instance [Page 253]).

Procedure
1. In the Methods branch of the object display, select the method you want to execute.

2. Click the Execute icon to execute the method.
The appearance of the next screen depends on the method parameter definitions:
a).
If the method has import parameters, they are displayed, and you can assign new values to
them. The system automatically checks their type.
Then choose Execute.
If your entries do not contain errors, the method is called using the parameters you specified.
You can also execute the method in debugging mode by choosing Debugging.

b).
For any other parameters, the method is called directly, and a result screen appears,
containing the runtime.

BC ABAP Workbench Tools SAP AG

Testing Methods

258 April 2001

You can debug methods that do not have import parameters by choosing Utilities �
Debugging � Switch on debugging.

Result
You have now used a test object to test the CALL METHOD statement for a class method.

If the method triggers an exception during the test, the system displays a dialog box
containing the exception name and message text.

 SAP AG BC ABAP Workbench Tools

Testing Event Handling

April 2001 259

Testing Event Handling
Within the test environment, you can test event handling using a default handler that catches the
event when it is triggered. A simulation of the ABAP SET HANDLER statement assigns handlers
to triggering events.

Prerequisites
You must have created an instance of the class that you want to test. Refer to Creating an
instance [Page 253].

Procedure
1. In the Events branch of the object display, select an event.

2. Choose Handler, to enable the handler.
The icon changes, to indicate that the handler is active.

3. Select a method in the object display.

4. Choose Execute. For further information about calling the method, refer to Testing methods
[Page 257].

Result
If the method is called successfully, the chosen event is triggered and the result displayed.

To switch off the handler for the chosen event, choose Utilities � Event handling �
Switch off handler.

BC ABAP Workbench Tools SAP AG

Testing an Interface View of an Object

260 April 2001

Testing an Interface View of an Object
Interface views of objects allow you to test access to interface attributes and methods of an
object, and so to simulate interface references.

Prerequisites
You must already have instantiated the class that you want to test. (see Creating an instance
[Page 253]).

Procedure
1. In the object display, select an interface.

Example:

2. Click the “magnifying glass” icon to generate an interface view of the object.
The system generates the view of the test object.

Example:

3. If necessary, change the attribute values (see Testing attributes [Page 255]).

4. If necessary, execute the methods (see Testing methods [Page 257]).

 SAP AG BC ABAP Workbench Tools

Testing an Interface View of an Object

April 2001 261

Result
You have not simulated accessing the attributes and methods of an object using interface
references.

BC ABAP Workbench Tools SAP AG

Screen Painter

262 April 2001

Screen Painter
The following documentation describes both the graphical and alphanumeric modes of the
Screen Painter. This ABAP Workbench tool allows you to create screens for your transactions.

If you are using the Screen Painter in conjunction with the Modification Assistant,
refer to the Modifications in the Screen Painter [Ext.] documentation.

 SAP AG BC ABAP Workbench Tools

Screen Painter Concepts

April 2001 263

Screen Painter Concepts
The Screen Painter is a ABAP Workbench tool that allows you to create screens for your
transactions. You use it both to create the screen itself, with fields and other graphical elements,
and to write the flow logic behind the screen.

In older documentation, screens are sometimes referred to as dynpros. This is short
for “Dynamic Program”, and means the combination of the screen and its
accompanying flow logic.

Screen Painter Architecture
You use the Screen Painter to create and maintain all elements of a screen. These are:

Screen Attributes Describe a screen object in the R/3 System. Screen attributes include the
program the screen belongs to and the screen type.

Screen layout Screen elements are the parts of a screen with which the user interacts.
Screen elements include checkboxes and radio buttons.

Elements Correspond to screen elements. Fields are defined in the ABAP
Dictionary or in your program.

Flow logic Controls the flow of your program.

Two Screen Painter Modes
The Screen Painter has a layout editor that you use to design your screen layout. It works in two
modes:

� Graphical mode [Page 274] and

� Alphanumeric mode [Page 315].

Both modes offer the same functions but use different interfaces. In graphical mode, you use a
drag and drop interface similar to a drawing tool. In alphanumeric mode, you use your keyboard
and menus.

Graphical mode is available only on MS Windows 95, MS Windows NT, and Unix/Motif platforms.

To activate the graphical mode, choose Utilities � Settings in the Screen Painter, then select the
Graphical layout editor option.

Creating a Screen: Basics
1. Create a screen in an existing program and define its attributes.

2. Design the screen layout and define the attributes of the elements.

3. Write the flow logic.

BC ABAP Workbench Tools SAP AG

Screen Painter Concepts

264 April 2001

Basic Principles
� Uses predefined elements with links to the ABAP Dictionary or program.

� Supports forwards navigation.

� Supports complex elements: Table Control and Tabstrip Control, and Custom Container.

� Cut/ Copy/ Paste (Graph. fullscreen)

� Undo/ Redo (Graph. fullscreen)

 SAP AG BC ABAP Workbench Tools

Screen Painter: Initial Screen

April 2001 265

Screen Painter: Initial Screen
To start the Screen Painter, choose the corresponding pushbutton on the initial screen of the
ABAP Workbench or enter Transaction SE51. From here, you can:

� Create new screens.

� Test an existing screen.

� Create new components for an existing screen.

The Object components text box lists the different screen component views. Each view lets you
edit a different aspect of a screen.

If you choose... You can...

Layout Editor maintain a screen's layout

Element list Maintain the ABAP Dictionary or program fields for a screen and assign a
program field to the OK_CODE field in the Screen Painter.

Screen attributes maintain a screen's attributes

Flow logic edit a screen's flow logic

BC ABAP Workbench Tools SAP AG

Screen Painter: Initial Screen

266 April 2001

Once you are within a particular view, you can use the Screen Painter's Goto menu
to enter the other views.

 SAP AG BC ABAP Workbench Tools

Creating Screens

April 2001 267

Creating Screens
You can create a screen from the Screen Painter initial screen or from the object list in the Object
Navigator.

Procedure
You create screens from the initial screen [Page 265] of the Screen Painter as follows

1. Start the Screen Painter.

2. Enter a program name.

The program you specify should be an executable program (type 1), a module pool (type
M), or a function group (type F) and must already exist.

3. Enter a screen number.

A screen number must be unique and up to 4 numbers long. All screen numbers above
9000 are reserved for SAP's customers. The number 1000 is reserved for table screens
and report selection screens. Initial screens of transactions are often given a number
whose last three digits are 100 (for example, 3100).

To display a list of a program's screens, use the possible entries button.

4. Choose Create.

The system displays the Change Screen Attributes screen.

5. Define the screen attributes.

Screen Attributes
Screen attributes enable the system to assign and process a screen. You can set the following
screen attributes:

Attribute Description and ergonomic guidelines

program Name of the module pool to which the screen belongs.

Screen number Identifies a unique name up to 4 numbers long.

Original Language Identifies a screen's maintenance language. When you create a
screen, the system sets this value to the module pool's
maintenance language.

Short description Describes a screen's purpose.

Original language Maintenance language for the screen. The system sets this
attribute to the same original language as the module pool
when you create the screen.

Development class Identifies the development class the screen belongs to.

Last changed/ Last generated Date and time that the screen was last changed or generated

Screen type

BC ABAP Workbench Tools SAP AG

Creating Screens

268 April 2001

Normal If you set this option, the screen is flagged as a normal screen.
This is the default setting.

Subscreen Identifies the screen as a subscreen.

Modal dialog box Identifies a specialized interface for display of lists in a dialog
box. See Using Modal Dialog Boxes [Ext.] for more
information.

Selection screen Automatically-created screen. Selection screens are used to
get values from the user at the beginning of a program. This
data is used to restrict database selections. The system sets
this attribute automatically.

Settings

Hold data The system only supports the Hold data, Set data, and Delete
data functions (under System � User profile) on the screen if
this option is selected. The system automatically redisplays the
user's last entries from the screen when the user displays the
screen a second or subsequent time.

Switch off runtime
compression

If you set this option, the screen is not compressed at runtime.

Ergonomic guideline: You should not use this option, since
empty lines may appear on the screen if you hide fields
dynamically at runtime. When gaps occur, users typically need
longer to process the screen.

Hold scroll position Use this option to specify whether the vertical and horizontal
scroll positions should be retained for a screen. If you set the
attribute, the scroll position is retained when the user returns to
the screen after processing another screen.

This also applies if the length or width of the screen changes, if
other subscreens are used, or if the cursor is placed outside the
visible area.

This setting is intended for large screens on which the scroll
position has previously been lost as a result of certain actions.

Other attributes

Next screens Number of the next screen to be displayed, assuming that the
screen sequence is processed statically.

Cursor position Element on which the cursor is positioned when the screen is
first displayed. If you leave this field blank, the system positions
the cursor on the first input field.

Screen group Four-character ID for a group of logically-related screens

Lines/columns occupied Size of the area occupied by screen elements.

Maintenance lines/columns Screen size in lines and columns. The size of a screen is
measured relative to the position of its top left-hand corner.

 SAP AG BC ABAP Workbench Tools

Creating Screens

April 2001 269

BC ABAP Workbench Tools SAP AG

The Flow Logic Editor

270 April 2001

The Flow Logic Editor
To display a screen's flow logic from the Repository Browser, double-click a screen name. The
system starts the flow logic editor of the Screen Painter:

The flow logic editor is similar to the ABAP Editor [Page 92] and provides functions for editing
screen flow logic.

Getting Help on Screen Keywords
The flow logic offers help on flow logic keywords.

Position the cursor on the corresponding keyword and choose F1.

Navigation
The Screen Painter supports the same navigation features provided with all Workbench tools.
You should be aware of the following features of navigation in the Screen Painter:

Double-click (F2) on... To reach...

a field name in the element list or in flow logic the point in the program where the field is
defined.

The number of the next screen the screen attributes of the next screen.

A screen number in the flow logic the flow logic of that screen.

A module name in the flow logic the point in the module pool where the module
is defined.

 SAP AG BC ABAP Workbench Tools

The Flow Logic Editor

April 2001 271

The Screen Painter also offers the global find and replace features of the ABAP Workbench.
You can find and replace element names (including generic searches) in the flow logic and
element lists. Each search generates a hit list, from which you can navigate to the corresponding
object.

BC ABAP Workbench Tools SAP AG

Flow Logic Keywords

272 April 2001

Flow Logic Keywords
You define the flow logic in the flow logic editor of the Screen Painter, using the following
keywords:

Keyword Description

CALL Calls a subscreen.

CHAIN Starts a processing chain.

ENDCHAIN Ends a processing chain.

ENDLOOP Ends loop processing.

FIELD Refers to a field. You can combine this with the MODULE and
SELECT keywords.

LOOP Starts loop processing.

MODIFY Modifies a table.

MODULE Identifies a processing module.

ON Used with FIELD assignments.

PROCESS Defines a processing event.

SELECT Checks an entry against a table.

 VALUES Defines allowed input values.

For more information about transaction programming, see the ABAP User’s Guide [Ext.]

Example of Flow Logic Example
The following example shows some use of screen flow logic:
*--

* Sample Code

*---

*Processing Before Screen Output

PROCESS BEFORE OUTPUT.

 MODULE INIT_FIELDS.

* Self-programmed F1 Help

PROCESS ON HELP-REQUEST.

 FIELD GSSG-BUKRG MODULE V-BUKRG.

* Processing after user input

PROCESS AFTER INPUT.

* Lock customer master record

CHAIN.

 SAP AG BC ABAP Workbench Tools

Flow Logic Keywords

April 2001 273

FIELD GSSG-KTNRG

MODULE ENQUEUE_CUSTOMER_MASTER.

* Read customer master record

MODULE READ_CUSTOMER_MASTER.

* Read business area

MODULE READ_GSSG.

ENDCHAIN.

* Process function code

FIELD OK-CODE MODULE OKCODE ON INPUT.

BC ABAP Workbench Tools SAP AG

Graphical Layout Editor

274 April 2001

Graphical Layout Editor
The graphical layout editor provides a user-friendly environment for designing screens. You can
start the layout editor either from the initial screen of the Screen Painter or from the Repository
Browser.

Starting the Layout Editor
To start the graphical layout editor from the initial screen of the Screen Painter:

1. Enter a program name and a screen number.

2. Choose Settings � Graph. Screen Painter.

3. Select Graphical Screen Painter and choose Continue.

4. Choose Layout Editor from the list of Components on the initial screen.

5. Choose Change.

The system opens your screen in the layout editor.

 SAP AG BC ABAP Workbench Tools

 Graphical Layout Editor

April 2001 275

Element palette Work area Element bar

Components of the Layout Editor
• Element palette, for creating screen elements. You can drag and drop these onto the

screen. For further details about the individual elements, see screen element types [Page
279]

• Work area. This is the main part of the layout editor, in which you design the screen itself.

• Element bar.
When you select a screen element, the major attributes associated with the element
appear in this line. You can also change these attributes in the corresponding field.

BC ABAP Workbench Tools SAP AG

Graphical Layout Editor

276 April 2001

 SAP AG BC ABAP Workbench Tools

 Graphical Layout Editor

April 2001 277

BC ABAP Workbench Tools SAP AG

Overview of Screen Layout

278 April 2001

Overview of Screen Layout
Once you have created a screen, you can start designing the screen layout.

You do this as follows:

� Select the ABAP Dictionary or program fields that you want to use on the screen. For further
details, see Selecting Fields [Page 283].

� Place any further screen elements [Page 279] in the work area.

� Once you have placed a screen element on the screen, you need to specify its attributes. For
details of how to do this, see Working with Element Attributes [Page 330].

� Use the Check function to ensure that your screen layout conforms with the SAP ergonomic
standards.

Screen size is measured in characters from a screen's top left corner. The standard
screen size is 21 lines by 83 columns. The maximum screen size is 200 lines by 240
columns. The system maintains the screen title, menu bar, status bar and command
field separately. These are not affected if you change the screen size.

 SAP AG BC ABAP Workbench Tools

Screen Elements

April 2001 279

Screen Elements
After you add an element to your screen, you can convert it to a another kind of element using
the Edit menu. You can also use the element palette to select and place screen elements without
first identifying fields.

Element Palette

Reset

Text field

Input/output field

Checkbox

Radio button

Pushbutton

Tabstrip control

Group box

Subscreen area

Table control

Status icon

Custom control

Tabstrip control using wizard

Table control using wizard

Element Types: Overview
You can use the following screen elements in the Screen Painter (both graphical and
alphanumeric):

Text Fields
Text fields provide labels for other elements. Text labels (sometimes called keywords) are
display-only elements: neither the user nor the ABAP program can modify them at runtime. Text
elements appear in a fixed position on the screen.

Text elements can also include literals, lines, icons, and other static elements. They can include
all alphanumeric characters. However, you cannot begin a text with an _ (underscore) or a ?

BC ABAP Workbench Tools SAP AG

Screen Elements

280 April 2001

(question mark). If you use a text to label a radio button or checkbox, the text must have the
same element name as the element it labels.

If the text consists of several words, join the words together with underscores. The underscores
allow the system to recognize the words as a unit. They are replaced by spaces at runtime.

Input/Output Fields
Input/output fields are sometimes called templates. You use them for entering and displaying
data. To define the size of an entry element, enter underscore characters in the Text field as
follows:

You can also use any other characters to format your template. For numeric values, you can
define a comma (,) as the separator and a period (.) as the decimal point. As the last character of
the template, you can set a V as place holder for signs.

Input/Output fields have no text labels. To assign a label to one, place a text field next to it.

Dropdown List Box
This is a special type of input/output field. Dropdown list boxes contain a list of entries from which
the user can choose one. You cannot type an entry into the text field of a list box.

For further information about defining list boxes in the Screen Painter, refer to the General
Attributes [Page 336] section.

For information about how to program a dropdown list box, refer to the dropdown boxes [Ext.]
section of the ABAP Programming manual.

Checkboxes
Use checkbox elements to allow a user to select one or more options in a group. Program control
is not immediately passed back to a work process on the application server. Further selections
are possible until the user pushes a button or chooses a menu function.

Radio Buttons
Radio buttons are exclusive selection buttons that belong to a logical group. If a user selects one,
the other buttons in the group are automatically deselected. You must both add the buttons and
define them as a radio-button group in order to make their selection mutually exclusive.

When a user selects a radio button, control is not passed back to a work process on the
application server immediately. As with checkboxes, further selections are possible until the user
either presses a pushbutton or selects a menu function.

Pushbuttons
You use pushbuttons to trigger a particular function. When a user chooses one, the system
sends the associated function code to the underlying ABAP program. At that point, control
automatically returns to a work process on the application server that processes the PAI
(Process After Input) module.

 SAP AG BC ABAP Workbench Tools

Screen Elements

April 2001 281

There is currently no link to the interface defined in the Menu Painter. The system
does not check whether the selected function codes correspond to a valid status.

A pushbutton label can be simple text or it can be dynamic text that changes at runtime. You
must define fields in your program for dynamic text. For more information about transaction
programming, see the ABAP User’s Guide [Ext.]

Boxes
Boxes contain sets of elements that belong together - for example, a radio button group. They
provide visual emphasis but have no other function.

The top edge of a box normally contains a left-justified header. This header can be either a text
field or an output field. If the header is a field element that is empty at runtime, the lines of the
box are closed.

Tabstrip Controls
Tabstrip controls are complex graphical elements. For further information, refer to:

� Using Tabstrip Controls [Page 291]

� Creating a Tabstrip Control in Graphical Mode [Page 293].

� Creating a Tabstrip Control in Alphanumeric Mode [Page 324].

Tabstrip Control Wizard
The Tabstrip Control Wizard takes you step by step through the procedure for creating a working
tabstrip control.

For further information, refer to Using the Tabstrip Control Wizard [Page 297].

Subscreen Areas
Subscreen elements are rectangular areas of a screen reserved for displaying other screens at
runtime. A subscreen area cannot include any other screen elements. You use subscreens to
include other screens within your main program.

To use a subscreen, define a second screen that appears in a subscreen area of the first screen.

Table Controls
Table controls are also complex graphical elements. For further information, See also:

� Table Controls [Page 299].

� Creating a Table Control in Graphical Mode [Page 301]. Creating a Table Control in
Alphanumeric Mode [Page 321].

� Editing Table Controls [Page 305].

Table Control Wizard
The Table Control Wizard takes you step by step through the procedure for creating a working
table control.

For further information, refer to Using the Table Control Wizard [Page 303].

BC ABAP Workbench Tools SAP AG

Screen Elements

282 April 2001

Custom Container
You can use the custom container to embed one or more controls within a screen area. The
custom container, like other screen elements, supports resizing and compression. In the Screen
Painter, a rectangular area appears as a placeholder for one or more controls. The control itself
does not appear on the screen until runtime.

You can define in the element attributes whether you want the control to be resizable.

For further information

� About the resizing attributes, refer to Custom Control Attributes [Page 347].

� About how to create containers, refer to graphical mode [Page 306] or alphanumeric mode
[Page 326].

� About controls, refer to Control Enabling Technology [Ext.].

Status Icons
Status icons are output fields that contain an icon. The icon is specified at runtime. You use icons
to indicate statuses in your application. Icons are predefined in the system and are each two to
four characters long.

 SAP AG BC ABAP Workbench Tools

Selecting Fields

April 2001 283

Selecting Fields
You add an element to a screen by using an existing ABAP Dictionary or program field.

Except for text elements, every element on your screen must have a corresponding Dictionary or
program field. When you select fields defined in the ABAP Dictionary, your elements come
equipped with the information already in the Dictionary, such as labels and formats. Additionally,
if you use Dictionary fields, the fields are automatically updated whenever their definition in the
ABAP Dictionary changes.

Using the Dict./program fields Dialog Box
You can list fields from the ABAP Dictionary or your program in the Dict./Program Fields dialog
box. You can open the Dict/Program fields dialog from the initial screen of the Screen Painter or
using the Goto menu on any other screen in the Screen Painter.

Using Dictionary and Program Fields on a Screen
1. Open the Dict.program fields dialog box.

2. Specify a table or field name.

You can enter field names generically, but you must always specify table names in full.

3. Transfer the program or table fields onto the screen.

To search for a table or field in the ABAP Dictionary, choose Get from Dict. To search for
a table or field in the ABAP program, choose Get from program. The system displays the
fields.

4. Select one or more fields.

5. Choose Continue.

The system displays the cursor and an outline of the field block in the work area.

BC ABAP Workbench Tools SAP AG

Selecting Fields

284 April 2001

6. Single-click to position the field block on the screen.

7. Single-click outside the field block to deselect the block.

If you copied several fields, they are copied as a group. After copying, you can move each field
individually. If you have included blank fields or invalid fields in your selection, the system
displays a message and deletes the fields. These fields are not copied.

Canceling a Copy
If you discover before placing a field on the screen that your selection is incorrect, you can cancel
the copy. To do this, choose Reset in the element palette.

 SAP AG BC ABAP Workbench Tools

Creating Screen Elements without Fields

April 2001 285

Creating Screen Elements without Fields
You can also add elements without first selecting fields from the Dict./program fields dialog. You
may prefer this if you want to add all elements to the screen before declaring corresponding
fields in your program or defining them in the ABAP Dictionary. SAP does not recommend this
method, however, since you lose the advantage of the centralized Dictionary definitions.

Entering Field Names
When you add elements without corresponding fields, you must also provide a field name
explicitly (the Field name field in the fullscreen editor). Enter a field name (up to 40 characters
long). The name can contain only alphabetic and the special characters # (pound sign), / (forward
slash), - (dash), _ (underscore),$ (dollar sign).

Special Case
If you enter a field name with a - (dash), the system checks to see if the ABAP Dictionary
contains the field. If it does, a dialog box appears, in which you can decide whether your field
should refer to the ABAP Dictionary field.

BC ABAP Workbench Tools SAP AG

Modifying Screen Elements

286 April 2001

Modifying Screen Elements
There are some operations common to all screen elements: selecting, moving, and deleting.
Some elements can also be resized. Selecting, moving, and deleting elements is different if you
are using the layout editor in alphanumeric mode [Page 315].

Selecting
To select a single element, single-click it.

You can select several elements by dragging a rectangular "rubber-band" around them as
follows:

1. Position the cursor outside the group.

2. Press and hold the left mouse button.

3. Drag the cursor away from its initial position.

The system displays a "rubber-band" to indicate the size of your selection.

4. Ensure the "rubber-band" encloses the entire group.

5. Release the left mouse button.

You can also select multiple elements by holding down the CTRL key while clicking on each
element.

Use the arrow keys to select individual elements one by one.

Deleting
You can delete any screen element by selecting it and choosing Edit � Delete.

Note
When you delete a table control or a tabstrip control, all of its elements are also deleted.

Deleting a group box deletes only the box itself, not its contents.

Moving
To move an object, select it and use the mouse to drag it to a new position. You cannot drag
elements to positions that overlap with other elements.

You can select several elements and move them as a group. Some elements have “handles” on
their top edge that you must use to reposition the element. To move a grouped element, select it
and then drag it by its handle to a new position.

Elements in a box element behave just like other grouped elements. When you move the box,
the elements it contains go with it.

Resizing a Screen Element
1. Select the element.

2. Click on the right or bottom edge of the element.

The mouse cursor changes shape if the object can be resized.

 SAP AG BC ABAP Workbench Tools

Modifying Screen Elements

April 2001 287

3. Resize the element by dragging the edge with the mouse.

You can also resize the screen itself by selecting and dragging the screen border. Alternatively,
you can change the number of rows and columns in the element attributes.

Undo/Repeat

You can always undo or repeat your last action, even if you deleted an element, using the undo
and repeat functions.

Cut, Copy, and Paste
You can cut, copy, and paste screen elements using the corresponding functions in the Edit
menu or in the toolbar.

BC ABAP Workbench Tools SAP AG

Using Icons

288 April 2001

Using Icons
You can use icons in place of or together with text elements, pushbuttons, checkboxes, and radio
buttons. Different icon types are available, depending on the element type. If you attempt to use
an invalid icon, the system displays an error message.

To replace or supplement texts with icons:

1. Select the element to which you want to add an icon.

2. Choose Attributes.

The Screen Painter: Attributes dialog appears.

Icon button

3. In the Icon name field, you can enter an icon name directly. However, since you usually do
not know icon names by heart, you can click the icon pushbutton to list the available icons:

 SAP AG BC ABAP Workbench Tools

Using Icons

April 2001 289

To find the desired icon, you can on this screen sort a column alphabetically, search for a
certain term, or display an overview of all icons.

If you want to use an icon for a template, you must select the With icon field. See also
General attributes [Page 336].

4. Close the Attributes dialog.

BC ABAP Workbench Tools SAP AG

Using Radio Buttons

290 April 2001

Using Radio Buttons
Combining screen elements into a radio button group means you can manipulate them as a unit,
instead of one by one. Before you can create a radio-button group, you must create the individual
radio buttons separately.

If you want to include checkboxes in a radio button group, you must first convert them into radio
buttons.

Defining a Radio Button Group
1. Select the individual radio buttons.

2. Choose Edit ��Grouping � Radio button group � Define.

The system defines a radio button group.

 Adding Radio Buttons to an Existing Group
1. Select an existing group.

2. Choose Edit ��Grouping � Radio button group � Dissolve.

3. Add the new buttons to the selection.

4. Select the group and choose Edit � Radio button group � Define.

The system displays a dotted line around the new group.

 SAP AG BC ABAP Workbench Tools

Tabstrip Controls

April 2001 291

Tabstrip Controls
Definition
 A tabstrip control is like a card index file that contains various screens belonging to a single
application. Unlike normal screen sequences, the user can always see the names of the other
screens to which he or she can jump immediately. This makes tabstrip controls an easy way to
define several components of an application on a single screen and to navigate between them.
The structure of your application thus becomes clearer to the user.

Use
You can use tabstrip controls:

� To give complex applications a uniform structure and make it easier for users to navigate
between their components.

� To make the structure of the application easier for users to learn and understand.

You should consider using tabstrip controls whenever a single object or application
has different components or logical views that users need to navigate between.
Property sheets are typically used to enter the attributes of complex objects.

Structure
The following illustration shows the essential components and environment of a tabstrip control:

Tab pageTab title Tab title rowTab environment

BC ABAP Workbench Tools SAP AG

Tabstrip Controls

292 April 2001

Tab Title
Tab titles contain the titles of the other components to which the user can navigate. Technically
speaking, they are pushbuttons. You can use icons on a tab title in exactly the same way as
you would on a pushbutton. The text on a tab title should be short and meaningful.

Tab Title Row
The first row of the tabstrip control is reserved for the tab titles. If you have defined more tab
titles than can be displayed at once, the system automatically displays scroll buttons in the top
right-hand corner of the tabstrip control to enable you to scroll between the tab titles.

Tab Page
A tab page contains a collection of fields that logically belong together. This is the equivalent of
placing a group box around a group of fields. Tab pages are implemented using subscreens.

Tab Environment
The screen environment around the tabstrip must remain constant. When you change between
tab pages, the menus, application toolbar, and other fields outside the tabstrip control must not
change.

For further information about designing and using tabstrip controls, see Transaction
BIBS. Under Elements, you will find a sample program for a tabstrip control. Under
Rules, there are tips for designing tabs.

 SAP AG BC ABAP Workbench Tools

Defining a Tabstrip Control

April 2001 293

Defining a Tabstrip Control
To define a simple tabstrip control, you must:

1. Define the tabstrip area.

2. Define the tab titles.

3. Define and assign a subscreen area.

4. Program the flow logic.

To find out how to create a tabstrip control in the alphanumeric Screen Painter, refer
to Creating Tabstrip Controls in Alphanumeric Mode [Page 324].

Procedure
Defining the Tabstrip Area.
To define a tabstrip area using the graphical layout editor:

1. With the Screen Painter in change mode, choose the tabstrip control icon from the element
palette.
The mouse pointer changes its shape.

2. Set the position of the top left-hand corner of the tabstrip with a single click, and keep the
mouse button pressed.

3. Drag the object out to the required size and release the mouse button.

4. If necessary, you can still change the position and size of the tabstrip control.

5. Assign a name <tab_strip_name> to the new tabstrip control.

6. Enter any further tabstrip attributes [Page 345] as required.

The element name of the tabstrip control is the name that you use to declare the
tabstrip control in your ABAP program using the following statement:
CONTROLS <tab_strip_name> TYPE TABSTRIP.

Defining The Tab Titles
By default new tabstrip controls come with two tab titles. In technical terms, you process tab titles
exactly like pushbuttons. If you want your tabstrip control to have more than two tab titles, you
must change the Tab titles attribute..

1. Double-click a tab title to open the corresponding attribute window (for the pushbutton)

2. Assign the tab title attributes:

Attribute Meaning

Name Name of the pushbutton that forms the tab title

Text Text for the button

BC ABAP Workbench Tools SAP AG

Defining a Tabstrip Control

294 April 2001

Icon name Icon to be displayed as part of the title.
Note: this is not recommended for ergonomic reasons.
The exception to this are icons for status displays, or icons that are genuinely
self-explanatory (phone, fax, alarm…) used instead of text.

FctCode Function code that triggers the PAI event. When the user clicks the tab, the
function code is placed in the system field SY-UCOMM.
If you are scrolling at the backend, the function code is also placed in the
OK_CODE field.

FctType A tab title may have the function type <P> or <SPACE>. To scroll locally at the
frontend, use type <P>. In this case, the PAI event is not triggered when the
user chooses a tab title, and there is no data transfer to the application server.
To scroll at the backend, use function type <SPACE> (no special type
assignment). In this case, the PAI event is triggered when the user chooses a
tab title, and the function code is placed in the OK_CODE field.

3. Repeat steps 1 and 2 for each new tab title.

Just like normal pushbuttons, you can assign dynamic texts to tab titles.

Assigning a Subscreen Area
You must assign a subscreen area to each tab page. If you are using local scrolling at the
frontend (function type <P>) you must assign a separate subscreen area to each tab page.
If you are scrolling at the backend (function type <SPACE>), you can use one shared subscreen
area for all tab pages.

To assign a subscreen area to a tab page:

1. Select a tab title.

2. Choose Subscreen area from the element toolbar.

3. Position the subscreen area within the tabstrip control, and drag it to the required size.

4. Enter a name <subscreen_area> for the subscreen area.
This name also appears as the reference field in the tab title attributes.

You can also assign the subscreen area manually by entering the name of the
subscreen name in the reference field attribute. Note that this only works if you are
using backend scrolling.

Programming the Flow Logic
This explanation of the flow logic is restricted to that necessary to include the appropriate
subscreen screens in the right subscreen areas in the tabstrip control. There are two ways of
doing this, depending on the scrolling method you are using.

Local Scrolling at the Frontend
If you are using frontend scrolling, you must include subscreen screens in all of your subscreen
areas in the tabstrip control.

You can do this in the screen flow logic as follows:

 SAP AG BC ABAP Workbench Tools

Defining a Tabstrip Control

April 2001 295

1. Add the following statements to the PBO event of your flow logic:

PROCESS BFORE OUTPUT.

 CALL SUBSCREEN: <subscreen_area1> INCLUDING [<progname 1>]
<subscreen_scrn 1>,
 <subscreen_area2> INCLUDING [<progname 2>]
<subscreen_scrn 2>,
 <subscreen_area3> INCLUDING [<progname 3>]
<subscreen_scrn 3>,
 ...
...

Note that you can take the individual subscreen screens from different ABAP
programs.

2. Add the following statements to the PAI event of your flow logic:

PROCESS AFTER INPUT.
...
 CALL SUBSCREEN: <subscreen_area1>,
 <subscreen_area2>,
 <subscreen_area3>,
 ...
...

Scrolling at the Application Server
If you are scrolling at the application server, you only need to include one subscreen at a time in
a single subscreen area.

To do this, you must:

1. Add the following statement to the PBO event of your flow logic:

PROCESS BFORE OUTPUT.
...
CALL SUBSCREEN < subscreen_area> INCLUDING [<progname>]
<subscreen_scrn>.
...

2. Add the following statement to the PAI event of your flow logic:
PROCESS AFTER INPUT.
...
CALL SUBSCREEN < subscreen_area>.

Result
You have now created a tabstrip control in the Screen Painter, and determined whether the tab
pages should be scrolled at the frontend or on the application server.
You can now turn your attention to programming the reaction to user input in your tabstrip
control.

For further information about handling tabstrip controls in your ABAP programs, refer to the
Tabstrip Control [Ext.] section of the ABAP Programming Guide.

BC ABAP Workbench Tools SAP AG

Defining a Tabstrip Control

296 April 2001

 SAP AG BC ABAP Workbench Tools

Using the Tabstrip Control Wizard

April 2001 297

Using the Tabstrip Control Wizard
The tabstrip control wizard allows you to create and implement tabstrip controls quickly and
easily. The generated dialog logic uses backend scrolling.

You can use tabstrip controls that you generate in this way as a basis for further refinement in
your application.

Features
� Creates an instance of the tabstrip control.

� Defines the tab pages and associated function codes.

� Assigns a common subscreen area to all tab pages.

� Creates a new subscreen screen (unless you want to use an existing one).

� Generates the flow logic required for backend scrolling.

� Creates the PBO and PAI modules and all necessary data definitions.

� Creates the appropriate includes for the modules and data definitions (if required).

Procedure
To start the tabstrip control wizard:

In the graphical Screen Painter
1. Start the layout editor.

2. Switch to change mode if required.

3. Choose from the element toolbar.

4. Define the tabstrip control area on the screen.

The wizard then starts in a separate dialog box.

5. The wizard now takes you through the steps required to create a working tabstrip control.
The whole process consists of five steps, in which you define the attributes of the tabstrip
control and the ABAP code you want to generate. You can navigate between the dialogs
using the Continue and Back functions. When you choose Finish, the system generates the
tabstrip control.

In the alphanumeric Screen Painter
1. Start the layout editor.

2. Switch to change mode if required.

3. Position the cursor where you would like the top left-hand corner of the tabstrip control area
to be.

4. Choose Edit � Wizards for creating elements � Tabstrip.

5. Position the cursor where you would like the bottom right-hand corner of the tabstrip control
to be.

6. Choose Mark end of ctrl.

BC ABAP Workbench Tools SAP AG

Using the Tabstrip Control Wizard

298 April 2001

The wizard then starts in a separate dialog box.

7. See step 5 from the procedure for the graphical Screen Painter.

If an error occurs when the system tries to generate the tabstrip control or you cancel
the wizard, all of the objects and source code created by the wizard are deleted, and
the starting state of the program is restored.

 SAP AG BC ABAP Workbench Tools

Table Controls

April 2001 299

Table Controls
Definition
A table control is an area on the screen in which you can display data in tabular form. You
process it using a loop. Table controls are comparable to step loop tables. While a table control
consists of a single definition row, step loop blocks may extend over more than one row. Table
controls are more flexible than step loops, and are intended to replace them.

For further information about designing and using table controls, see Transaction
BIBS. Choose Elements � Table controls to display sample table controls for
various purposes. Choose Rules to display hints for designing table controls.

Use
Table controls allow you to enter, display, and modify tabular data easily on the screen.

They provide the following functions:

� On definition:

– Fixed columns

– Column headers

� At runtime:

– Vertical and horizontal scrolling.

– Modifiable column width.

– Row and column selection.

– Movable columns

– Settings can be saved.

Components of a Table Control
The following diagram shows the main components of a table control:

BC ABAP Workbench Tools SAP AG

Table Controls

300 April 2001

Header lineDefinition line

Selection column Scrollbars

Settings button
Title bar

Fixed leading column

Note
� Lines in a table control may contain keywords, input/output fields, radio buttons, checkboxes,

radio button groups, and pushbuttons.

� A line can be up to 255 columns wide.

 SAP AG BC ABAP Workbench Tools

Defining a Table Control

April 2001 301

Defining a Table Control
1. Define the table control area.

2. Define the table control elements.

3. Add a title (optional).

4. Declare the table control in your module pool.

Procedure

The procedures described in this documentation are different if you are using the
fullscreen editor in alphanumeric mode. For further information, see Creating a table
control in alphanumeric mode [Page 321].

Defining the Table Control Area
1. With the Screen Painter in change mode, choose the table control icon from the element

palette.
The mouse pointer changes its shape.

2. Drag and drop the object onto the screen work area.

3. Resize or reposition the table control if necessary.

4. Assign an element name to the new table control.

Defining Elements
To define elements for your table control, you can use ABAP Dictionary fields, fields from the
program, or completely new fields. If you are using ABAP Dictionary or program fields, follow the
procedure described in Selecting Fields [Page 283]. If you want to create new fields, you use
elements from the element palette as follows:

1. Choose an element from the element palette and place it in the definition line of the table
control.
The system creates a new column.

2. Assign an element name to the element, and any necessary attributes.

3. Create a column header by dragging a text or entry element into the column heading.

4. Repeat steps 1-3 for each additional column.

5. Set the remaining table control attributes [Page 346].

Adding a Title
1. In the table control attributes, select With title.

A dialog box appears, reminding you to create a title element.

2. Enter a text field or an input/output element in the title row.

3. Enter an element name, and the title in the Text field.

BC ABAP Workbench Tools SAP AG

Defining a Table Control

302 April 2001

Declaring the Table Control in the Module Pool
Insert the following CONTROLS statement in the global data declaration of your transaction:

CONTROLS <tab_ctrl_name> TYPE TABLEVIEW USING SCREEN <screen_no>.

For information on processing the table, see Editing Table Controls [Page305].

 SAP AG BC ABAP Workbench Tools

Using the Table Control Wizard

April 2001 303

Using the Table Control Wizard
This wizard allows you to create a working table control quickly and easily. It also lets you
generate certain standard table maintenance functions.

You can create table controls in this way and then adapt them to the particular needs of your
application.

Features
� Creates an instance of the table control.

� Assigns an ABAP Dictionary or program table to the table control.

� Selects the table fields for the column definition.

� Assigns important table control attributes.

� Generates the relevant statements in the screen flow logic.

� Creates PBO and PAI modules, subroutines (for standard table maintenance functions), and
all necessary data definitions.

� Generates standard functions for table maintenance (scrolling, insert/delete lines,
select/deselect all).

� Creates includes for the modules, data definitions, and subroutines, if required.

Procedure
To start the table control wizard:

In the graphical Screen Painte
1. Start the layout editor.

2. Switch to change mode if necessary.

3. Choose from the element toolbar.

4. Define the table control area on the screen.

The wizard is now started in a separate dialog box.

5. The wizard now takes you through the steps required to generate a working table control.
The process consists of seven dialogs in which you define the attributes of the table controls
and the ABAP code that needs to be generated. You can navigate between the dialogs using
the Continue and Back buttons. When you choose Finish, the table control is generated.

In the alphanumeric Screen Painter
1. Start the layout editor.

2. Switch to change mode if required.

3. Position the cursor where you would like the top left-hand corner of the table control area to
be.

4. Choose Edit � Wizards for creating elements � Table control.

BC ABAP Workbench Tools SAP AG

Using the Table Control Wizard

304 April 2001

5. Position the cursor where you would like the bottom right-hand corner of the table control
area to be.

6. Choose Mark end of ctrl.

The system starts the wizard in a separate dialog box.

The procedure then continues as described in step 5 above.

If an error occurs when you generate the table control, or you cancel the wizard, all
of the objects and ABAP coding generated by the wizard are deleted.

 SAP AG BC ABAP Workbench Tools

Editing Table Controls

April 2001 305

Editing Table Controls
Changing the Size and Position
You must select the table control in the Screen Painter before you can modify it. When a table
control is selected, handles appear on three sides of it. You can use these to move or resize the
table control.

Use the square handle on top of the table control to reposition it. Use the diamond-shaped
handles to resize it.

Arranging Columns
� To rearrange the columns in a table control, choose a column and drag it to its new position.

The system automatically rearranges the column headings.

� To move a column to a position that is not currently visible (scrolled off the screen):

a) Select the column and its column heading (if it has one), and drag them out of the
table control.

b) Scroll through the table control until the required position is visible.

c) Move the column and its heading back into the table control at the new position.

You can also use the cut and paste functions to move columns within the table
control. Alternatively, you can enter the new column number directly in the table
control attributes.

� To delete a column heading, select it and choose Edit � Delete. You can delete the contents
of a column in the same manner. When you delete a column, the system also deletes its
heading.

� To allow users to select columns in the table control, set the column sel. attribute. You can
also decide whether to allow single or multiple column selection. The default setting is single
selection.

Editing a Row
You can also allow users to select rows in a table control. To do this, you must set the Line sel.
attribute. Again, you can choose whether to allow single or multiple line selection. In addition, you
must mark the w/ SelColumn field and enter a field name into the adjacent field. This name
allows you to query which line the user selected from your ABAP program.

See also
Table Control Attributes [Page 346]

BC ABAP Workbench Tools SAP AG

Creating a Custom Container

306 April 2001

Creating a Custom Container
A custom container is a control into which you can place other controls. It allows the screen
framework to resize and compress controls at runtime.

For further information about control technology, refer to the SAP Control Framework [Ext.]
documentation.

.

Prerequisites
You must already have opened the graphical layout editor in change mode.

Procedure
1. Choose the Custom Control icon in the element palette.

The shape of the cursor changes.

2. Use the cursor to position the container on the screen and drag it out to the required size.

3. Change the size and position of the container if required.

4. Enter the name of the container.

5. Specify the resizing attributes [Page 347].

Result
You have now created a custom container. The actual reserved area in the Screen Painter is a
placeholder for the control that you will embed there. The custom container is referred to as the
parent of the control or controls that are to be embedded in it.

 SAP AG BC ABAP Workbench Tools

Creating a Custom Container

April 2001 307

BC ABAP Workbench Tools SAP AG

Creating a Custom Container

308 April 2001

See also:
Creating a Control using the SAP Picture as an Example [Ext.]

 SAP AG BC ABAP Workbench Tools

Working with Step Loops

April 2001 309

Working with Step Loops

Step loops are considerably less flexible than their replacement, table controls [Page
299].

Step Loops
You can group screen elements together into a step loop. A step loop is a repeated series of loop
blocks. A loop block consists of one or more loop lines of graphical screen elements. You can
define a loop block as fixed or variable.

In a fixed loop, the lower limit of the loop area always remains as originally defined. For a
variable loop, the number of repetitions is adjusted dynamically in the screen program to suit the
size of the current window. In order to be able to react to the variable loop size, the system
always places the current number of loop blocks in the system field SY-LOOPC. If the screen
includes several loop blocks, you can define only one of these as variable.

When you execute a screen with several loop blocks, the online processor runs through this
"screen table" line by line.

� Do not use the steploop method to format lists. Use a report program
instead.

� The step loop procedures in the alphanumeric display are different. For
further information, see Creating and Editing Steploops in Alphanumeric
Mode [Page 328].

Creating a Steploop
1. Open a screen in the layout editor.

2. In one or more lines, create the elements you want to repeat.

3. Select all the elements on the desired line(s) as a group.

4. Choose Edit ��Grouping � Steploop � Define.

Your element lines now make up a single steploop block. The block includes the original
elements with their attributes and a predefined number of repetition blocks. Each
repetition contains a copy of the first block without attributes. The repetition blocks are
consecutively numbered, so that you can establish a reference to a particular line.

Editing a Step Loop
� To edit a loop block as a complete unit, click on the loop's border handles. By choosing Edit

� Grouping � Steploop, you can manipulate the block using functions such as Define,
Variable or Fix, or Undefine.

� To remove an element from a block, click on the element and choose Delete. If you delete all
the elements, the block is deleted as well.

BC ABAP Workbench Tools SAP AG

Working with Step Loops

310 April 2001

� To dissolve a loop block, select it and choose Edit � Steploop � Undefine. The individual
elements then become normal screen elements again.

� To define a steploop as fixed or variable, select a steploop and choose Edit � Grouping �
Steploop � Fix or Variable. Recall that a variable loop is adjusted dynamically with the
screen size and a fixed loop is not.

When you have completed the definition procedure, see the ABAP User’s Guide [Ext.] for
information on programming steploops.

 SAP AG BC ABAP Workbench Tools

Converting a Step Loop

April 2001 311

Converting a Step Loop
You can convert a steploop into a table control. When converting a steploop, you have to decide
whether to include headings in the conversion or not.

Converting without Headings
Select a steploop without including its headings and choose Edit � Convert � Table Control.
The system creates a table control that is exactly the size initially occupied by the original
steploop.

The first row of the table control (used for column headings) remains empty. Multiple-line
steploops are linked to one table row. If the row is too long to fit into the visible area, you must
scroll the table to view the row. The system calculates the table's column widths from the space
between the elements in the original steploop.

Converting with Headings
Select a steploop together with its headings as a group and choose Edit � Convert � Table
Control.

The system creates the table and fills the heading row with the headings from the steploop. The
headings are inserted according to the sequence of the steploop columns and not according to
their names.

The system adjusts the table control height to include the former headings.

BC ABAP Workbench Tools SAP AG

Element List in Graphical Mode

312 April 2001

Element List in Graphical Mode
The Element list provides you with an overview of all of the attributes of all of the elements on the
screen. You can display and change the attributes in exactly the same way as in the attributes
dialog box for a single element.
An element list is always assigned to an editor session. The way in which the attributes are
displayed depends on whether you are using the Screen Painter in graphical or alphanumeric
mode.

This section describes the element list in the graphical layout editor. To display the list, choose
Element list from the editor.

If you start the element list from the initial screen of the Screen Painter, the system
displays the element list in alphanumeric mode [Page 333].

Special Features
The attributes in the element list are divided into four categories:

 SAP AG BC ABAP Workbench Tools

 Element List in Graphical Mode

April 2001 313

• General

• Dictionary

• Program

• Display

The groups are marked with different colors. When you click one of the colored buttons, the
corresponding group of attributes is displayed in the dialog box.

You can expand or collapse a group of attributes by clicking the plus or minus sign below the
attribute header.

The second column contains a hierarchical list of screen elements. Complex elements such as
tabstrip controls and table controls each have a subtree. You can expand or collapse a subtree
by clicking its plus or minus sign.

BC ABAP Workbench Tools SAP AG

Element List in Graphical Mode

314 April 2001

 SAP AG BC ABAP Workbench Tools

The Alphanumeric Fullscreen Editor

April 2001 315

The Alphanumeric Fullscreen Editor
The graphical fullscreen editor provides a user-friendly environment for designing screens on all
platforms. You can start the fullscreen editor either from the initial screen of the Screen Painter or
from the Repository Browser.

Starting the Fullscreen Editor
To start the alphanumeric fullscreen editor from the initial screen of the Screen Painter:

1. Enter a program name and a screen number.

2. Choose Settings � Graph. fullscreen.

3. If Graphical fullscreen is selected, deselect it and choose Continue.

4. Choose Fullscreen Editor from the list of Components on the initial screen.

5. Choose Change.

The system opens your screen in change mode in the fullscreen editor.

Example:

BC ABAP Workbench Tools SAP AG

The Alphanumeric Fullscreen Editor

316 April 2001

Differences Between the Alphanumeric and Graphical Modes
The alphanumeric fullscreen editor contains the same functions as the graphical fullscreen. The
difference between the two lies in the way you create graphical elements and how they are
displayed on the screen.

Representation of Graphical Elements
The system uses alphanumeric characters to display graphical elements. The system
distinguishes all the graphical elements with color.

To ensure that you do not accidentally overwrite one, they are all write-protected. To change an
element, you must select it and then choose an appropriate function.

See also:

Creating Screen Elements [Page 317]

Modifying Screen Elements [Page 330]

 SAP AG BC ABAP Workbench Tools

Creating Screen Elements

April 2001 317

Creating Screen Elements
Unlike in the graphical fullscreen editor, you do not choose elements from the element palette.
Instead, you use menus.

For a short description of all screen elements, see Screen Element Types [Page 279]

There are two ways of creating a screen element:

� You can link a new element to an existing ABAP Dictionary or program field. For details of
how to do this, see Using Dictionary and Program Fields on a Screen [Page 319].

� You can also create new screen elements without reference to an ABAP Dictionary or
program field by choosing Edit � Create element.

Procedure
The procedure differs according to the type of screen element you want to create.

Creating a Text Field, Input/Output Field, Radio Button, Checkbox, or
Pushbutton
1. Place the cursor at the position where you want to insert the element. You can move the

cursor using the arrow keys.

2. Choose Edit � Create element, followed by the appropriate element.

The Screen Element Attributes dialog box appears.

3. Fill in the appropriate attribute values.

If you are entering the name of a Dictionary field, the system prompts you for information
about how you want to interpret the field. If you are creating check boxes or radio
buttons, the system prompts you with two attributes screens. One for the element itself
and one for the element's label.

4. Choose Transfer.

The system then inserts the element at the current cursor position.

Creating a Group Box
1. Position the cursor where you want the top left-hand corner of the element to be.

2. Choose Edit � Create element � Box.

The Screen Element Attributes dialog box appears.

3. Enter the attributes of the group box.

4. Choose Transfer.

The system displays the change screen for the element.

5. Position the cursor where you want the bottom right-hand corner of the group box to be.

6. Choose End of box to set the group box on the screen.
The system displays the group box on the screen as you specified.

BC ABAP Workbench Tools SAP AG

Creating Screen Elements

318 April 2001

Creating a Subscreen
1. Position the cursor where you want the top left-hand corner of the subscreen to be.

2. Choose Edit � Create element � Subscreen.

On the screen, the system displays the area in which the subscreen can occur.

3. Position the cursor where you want the bottom right-hand corner of the subscreen area to be.

4. Choose Area end.

The Screen Element Attributes dialog box appears.

5. Enter the attributes of the subscreen.

6. Choose Copy.
The system displays the group box on the screen as you specified.

Creating a Table Control
See Creating a Table Control [Page 321].

Creating a Tabstrip Control
See Creating a Tabstrip Control [Page 324].

Creating a Steploop
See Working with Step Loops [Page 328].

 SAP AG BC ABAP Workbench Tools

 Using Dictionary and Program Fields on a Screen

April 2001 319

Using Dictionary and Program Fields on a Screen
You can add an element to a screen by using an existing ABAP Dictionary or program field.

Procedure
To use a selection of ABAP Dictionary fields on a screen:

1. Position the cursor where you want to insert the fields.

2. Choose Goto → Dict./Program fields.

3. Enter a table name.
(You must specify the table name in full.)

4. Get the table fields from the ABAP Dictionary or the program.
To search for a table or field in the ABAP Dictionary, choose Get from Dict. To search for
a table or field in the ABAP module pool, choose Get from program. The system displays
the fields.

5. Select one or more fields.

6. Choose Transfer.
The system returns you to the fullscreen editor.

7. Choose Select.

Result
The fields that you chose are displayed in a block in the fullscreen editor.

BC ABAP Workbench Tools SAP AG

Using Dictionary and Program Fields on a Screen

320 April 2001

You can now work further with the fields, either individually or as a block.

See also
Modifying Screen Elements [Page 330]

 SAP AG BC ABAP Workbench Tools

Creating and Modifying Table Controls

April 2001 321

Creating and Modifying Table Controls
For further information about defining and using table controls, see Table Controls [Page 299].

There is also a table control wizard, which you can use instead of the method
described below. The wizard takes you step by step through the procedure required
to create a working table control.
For further information, refer to Using the Table Control Wizard [Page 303].

Creating a Table Control
1. Position the cursor where you want the top left-hand corner of the table control to appear.

2. Choose Edit � Create elements � Table control.

The system shows the maximum possible size for the table control in the fullscreen
editor.

3. Position the cursor where you want the bottom right-hand corner of the subscreen area to be.

4. Choose Select Ctrl end to mark the end of the table control.

The attribute dialog box appears.

5. Enter the table control attributes [Page 346].

6. Choose Copy.
The table control appears in the fullscreen editor according to the size and attributes you
have specified.

Adding Elements and Headings
The following procedure assumes that you are creating new screen elements without reference
to ABAP Dictionary or program fields [Page 339]. If you are, choose Dict./Prog fields in step 5.

BC ABAP Workbench Tools SAP AG

Creating and Modifying Table Controls

322 April 2001

1. Position the cursor within the table control area.

2. Choose Select or Edit � Table control.
The application toolbar now contains special functions for editing table controls.

3. Choose Ctrl elements.
A dialog box appears, in which you can enter the definition of the table columns and their
headings.

4. Place the cursor in the input field for the relevant column.

5. Choose Create element.
Another dialog box appears, in which you can set an element type for the table column. You
can create a text field, an input/output field, a radio button, a checkbox, or a pushbutton.

6. Select a field type.
The Screen Element Attributes dialog box appears.

7. Enter the attributes and choose Copy.
If you are defining an input/output field, you must specify the defined length as well as the
field name.

8. Enter the column heading and press ENTER.

9. In the next dialog box, enter a field type and choose Continue.

10. Enter the field type attributes and choose Copy.

11. Repeat steps 4-10 for each additional column.

12. Choose Copy.

The table control, with its elements and column headings, is now displayed in the fullscreen
editor.

Adding a Table Title
1. Open the attribute window in the table control.

2. Select With title.

 SAP AG BC ABAP Workbench Tools

Creating and Modifying Table Controls

April 2001 323

3. Enter a field name for the title and choose Copy.

4. In the next dialog box, enter a field type and choose Continue.

5. Enter the field type attributes and choose Copy.

Editing Functions for Table Controls

function Explanation

Ctrl attributes Changes table control attributes.

Ctrl Elements Changes table control columns. (Adding, changing, and moving columns.)

Select Ctrl end Moves the bottom right-hand corner of the table control.

Deselect control Ends an editing session for the table control.

Convert TC Converts the table control into a fixed or variable step loop [Page 328].

Move TC Moves a table control to a new position.

Dissolve TC Dissolves the table control into individual elements. However, the system
can only place the elements in the original table area. If dissolving a table
control is likely to produce an unsatisfactory result, the system asks you
whether you really want to proceed.

Delete Ctrl Deletes the table control.

BC ABAP Workbench Tools SAP AG

Creating a Tabstrip Control

324 April 2001

Creating a Tabstrip Control
For further information about defining and using tabstrip controls, see Tabstrip Controls [Page
291].

There is also a tabstrip control wizard, which you can use instead of the method
described below. The wizard takes you step by step through the procedure required
to create a working tabstrip control.
For further information, refer to Using the Tabstrip Control Wizard [Page 297].

Procedure
Creating a tabstrip control in alphanumeric mode has two steps:

� Create a tabstrip area.

� Define tabstrip elements (pushbuttons and subscreen areas).

Defining the Tabstrip Area.
1. Position the cursor where you want the top left-hand corner of the tabstrip control to appear.

2. Choose Edit � Create elements � Tabstrip control.

The system displays the maximum possible size of the tabstrip control in the fullscreen
editor.

3. Position the cursor where you want the bottom right-hand corner of the tabstrip control to be.

4. Choose Select Ctrl end to mark the end of the tabstrip control.

 The attribute dialog box appears.

5. Enter the tabstrip control attributes [Page 345].

6. Choose Transfer.
The tabstrip control appears in the fullscreen editor according to the size and attributes you

 SAP AG BC ABAP Workbench Tools

Creating a Tabstrip Control

April 2001 325

have specified. By default new tabstrip controls come with two tab titles.

Defining Tabstrip Control Elements
You add further tab titles using pushbuttons. A subscreen area must be assigned to each tab
page.

1. Select the tabstrip control.
The tabstrip control is now ready for editing.

2. Choose Edit � Ctrl elements.
The tabstrip element dialog box appears.

3. Under tab title, enter the field name for the new pushbutton that you want to create.

4. Choose Attributes, or press ENTER.

5. Enter the attributes and choose Copy.

6. Enter the function code and function type of the pushbutton.

7. Repeat steps 3-6 for each additional pushbutton.

8. Under Subscreens, enter the field name of the subscreen area and confirm its attributes.

9. Under Reference subscreen, assign the appropriate subscreen areas to the pushbuttons.

10. Choose Transfer.

Result
You have now created a tabstrip control and assigned extra tab titles and subscreen areas to it.
For an impression of how the tabstrip looks at runtime, you can simulate the screen.

(See Testing Screens [Page 350].)

BC ABAP Workbench Tools SAP AG

Creating an SAP Custom Container

326 April 2001

Creating an SAP Custom Container
The “custom control” is actually a container for a control, which allows the screen framework to
support resizing and compression of controls.

For information about control programming, refer to the SAP Control Framework [Ext.]
documentation.

Requirements
You must have opened the layout editor of the alphanumeric Screen Painter in change mode.

Procedure
1. Place the cursor at the position you want the top left-hand corner of the container to occupy.

2. Choose Edit � Create element � Custom control.
The system displays the change screen for the container in its maximum dimensions.

3. Position the cursor at the position you want the bottom right-hand corner of the container to
occupy.

4. Choose Mark ctrl end to fix this position.
The attribute dialog box for custom controls appears.

5. Enter the custom control attributes [Page 347].

6. Choose Copy.
The system displays the control container with the dimensions that you specified in the dialog
box.

 SAP AG BC ABAP Workbench Tools

Creating an SAP Custom Container

April 2001 327

Functions for Editing the Container

Function Description

Ctrl Attributes Changes the attributes of the custom control

Mark ctrl end Changes the bottom right-hand corner of the control

Deselect ctrl Deselects the control

Delete ctrl Deletes the control

Move ctrl Moves the control to a new position

See also
Creating a Control Using the SAP Picture as an Example [Ext.]

BC ABAP Workbench Tools SAP AG

Creating and Modifying Step Loops

328 April 2001

Creating and Modifying Step Loops
The procedure for creating step loops differs depending on whether you are using the
alphanumeric or the graphical Screen Painter.

Creating a Step Loop
1. Create the elements you want in the loop.

The elements can appear on one line or on several lines. You can separate the elements
by blank lines.

2. Place your cursor on the element that will make the upper-left corner of the loop.

3. Choose Loop

The Screen Painter changes to the Change Loop Definition screen. You can create
several separate loop blocks on one screen, but nesting is not allowed.

4. Place your cursor on the lower right corner of the final element in the loop.

5. Choose Loop block end.

The system automatically generates a fixed loop block with two repetitions. You can now
either edit the step loop further, or choose Back to return to the normal fullscreen editor.

6. Save your changes.

Step Loop Editing Functions
To edit a step loop, you must be in the Change Loop Definition screen. To edit an existing loop
block, place the cursor on the block and choose Loop. The following functions are available for
editing a step loop:

function Explanation

End line of loop Defines the length of the loop area. The system automatically repeats the
block within the defined area.

Variable loop Defines a variable loop. With a variable loop, the system adjusts the
number of repetitions dynamically in the screen program to suit the size of
the current window. If the screen includes several loop blocks, you can
define only one of these as variable.

The maximum number of lines is 200. In order to be able to react to the
variable loop size, the system always places the current number of loop
blocks in the system field SY-LOOPC.

With a fixed loop, the lower limit of the loop area always remains as
originally defined.

Dissolve Dissolves the loop by placing its fields in the screen.

Move loop Moves the loop to a new location.

You can make changes only in the definition block. Changes in the definition block automatically
affect the repetition blocks. In the actual definition block, you can change the attributes of

 SAP AG BC ABAP Workbench Tools

Creating and Modifying Step Loops

April 2001 329

elements as usual. You can also define new elements or delete elements. However, you cannot
insert or delete lines within the loop block.

If you choose either Edit � Select or Edit � Temporary storage � Copy to temp.storage,
you can work in the same way as for fields not in a loop. However, you can select only elements
in the loop definition block. The selected block cannot exceed the loop limits.

You can copy elements from outside to the loop block or vice versa. In both cases, the system
adapts the element attributes accordingly. When you copy to a loop block, the elements are
automatically added to the corresponding repetition elements. When you copy from a loop block,
the same repetition elements are deleted.

BC ABAP Workbench Tools SAP AG

Modifying Screen Elements

330 April 2001

Modifying Screen Elements
To edit a graphical element in alphanumeric mode you must first open the element's change
screen. To open a change screen, place your cursor on an element and choose Edit �
Graphical element. From a change screen, you can:

� Combine a series of logically associated radio buttons into a radio-button group.

� Dissolve a radio-button group into a series of individual radio buttons.

� Convert radio buttons to check boxes and vice versa.

� Convert elements

See Converting elements [Page 332].

� Move an element or a radio button group.

� Change the size of group boxes and subscreens.

Choose Back to leave the edit mode of a graphical element and return to the normal
alphanumeric fullscreen.

Selecting
To select an element, double-click it. Alternatively, you can place the cursor on the element and
choose Select. When you select an element, the system displays the Change Select screen. To
return to the normal fullscreen editor screen, choose Back

If you select elements joined in a group, the entire group is selected. To select a block of
elements do the following:

1. Select the first element in the block.

The system places you in the Change Select screen.

2. Place your cursor on the element at the end of the block.

3. Choose Mark end of block.

The system highlights the entire block.

Moving
To move a selected element or block of elements, do the following:

1. Select the element.

The system places you in the Change Select screen.

2. Select a point on the screen where you want to move the element to.

If you are moving a block, the new position can be within the old block. The system
simply shifts the entire block to the new position.

3. Choose Move.

 SAP AG BC ABAP Workbench Tools

Modifying Screen Elements

April 2001 331

Copying and Inserting Elements
You can copy a selected element into the clipboard and later insert the copy at another point on a
screen. To copy an element, select it and choose Copy to t. stor. To insert the clipboard contents,
place the cursor at the desired destination and choose Edit � Clipboard � Insert frm t. stor.

To cut and paste a selection of the screen, do the following:

1. Select the element.

2. Copy the element to the clipboard.

3. Delete the original element.

4. Position the cursor at a new location.

To paste the clipboard's contents into another screen, you must first call the other screen
by choosing Screen � Open. Choose Screen � Other screen.

5. Insert the copy from the clipboard.

The advantage of this procedure is that you do not have to specify element attributes; the
clipboard retains the original attributes. The clipboard is maintained only for a single Screen
Painter session. To view the clipboards contents, choose Edit � Clipboard � Display
clipboard.

Loop information is not retained. If you need loop blocks after inserting, you must
recreate them.

BC ABAP Workbench Tools SAP AG

Converting Elements

332 April 2001

Converting Elements
Just as in graphical mode, you can convert elements in the alphanumeric mode. The procedure
is slightly different in alphanumeric mode. To convert an element, do the following:

1. Place your cursor on an element.

2. Choose Graphical element.

The system displays the change screen for the element.

3. Choose Edit � Convert and a new element type.

Combine the radio buttons to form a radio-button group.

Converting Elements into Pushbuttons
Before converting pushbuttons, make sure that you use only keywords or output fields. You
cannot convert input fields into buttons. After you convert an element, you can assign it a function
code using one of Field list screen or Attributes for 1 field dialog.

Converting Tables into Step Loops
If you want to convert a table control into a variable or fix step loop, the system again tries to use
the columns and lines given. If this is impossible, the system creates multiple-line step loops. The
system always creates as many repetition lines as possible, with two as a minimum.

 SAP AG BC ABAP Workbench Tools

Using the Field List View

April 2001 333

Using the Field List View
You can use the field list to display or change the attributes of any element on the screen.

Use the Goto menu to display the Field List screen or choose Field list from the fullscreen editor.
Example:

Components of the User Interface
View Description

Field types Contains attributes that describe the field. This includes attributes
specific to the visual element and attributes connected to the
underlying field.

Texts and I/O templates Contains attributes related to the text and icons that are
associated with an element.

General attr. Contains attributes related to how the user interacts with the field.
This screen includes attributes like whether a field is required or
not.

Display attr. Contains display attributes such as whether a field is visible or
right-justified.

Modif. groups Contains modification group attributes.

References Contains the attributes for search helps and references.

The first column in each field list view displays the hierarchy of the element. For complex
elements, that is, step loops, table controls, and subscreens, this column contains a + (plus sign).
For elements contained in the directly preceding complex elements, this column displays a -
(minus sign).

BC ABAP Workbench Tools SAP AG

Using the Field List View

334 April 2001

 SAP AG BC ABAP Workbench Tools

Defining the Element Attributes

April 2001 335

Defining the Element Attributes
After adding screen elements to your screen, you must provide attributes for each element. The
system sets some of these attributes automatically. You can set the attributes either in the
Attributes window or in the element list [Page 312].

The Attributes Dialog Box
To display the Attributes dialog from the fullscreen editor, choose Attributes or double-click an
element. The Attributes dialog lists the attributes for a specific element.

These can be divided into

� General attributes [Page 336]

� Dictionary attributes [Page 339]

� Program attributes [Page 341]

� Display attributes [Page 343].

When you use table controls, tabstrip controls, or other controls, you should also remember the
following sets of attributes:

� Table control attributes [Page 346]

� Tabstrip control attributes [Page 345]

� Custom Control Attributes [Page 347]

Any changes you make in the element attributes window using radio buttons become
active at once. Text changes become active when the text editor ceases to be the
active field (for example, when you click on another field).

BC ABAP Workbench Tools SAP AG

General Attributes

336 April 2001

General Attributes
For other attributes, refer to Working with Element Attributes [Page 335].

The general attributes comprise the following:

Attribute Description and Ergonomic Guidelines

Field type Identifies a screen element type (for example, keyword or group box).

Name Identifies an element. You use this name to address a field from a module pool.
All input/output fields require a name. Text fields require a field name only if they
are translated into another language.

An input/output field and the keyword that labels it can share the same field name.
Otherwise, field names must be unique. Field names can not exceed 40
characters and must begin with a letter or an * (asterisk). The only special
characters allowed are # (pound sign), / (forward slash), - (dash), _ (underscore)
and $ (dollar sign).

If you enter a new field name or change an existing name so that it contains a -
(dash), the system checks the ABAP Dictionary for information associated with
the field. On the Field attributes screen, the system automatically copies any
information into the field's attributes. On the Attributes screen, the system asks
whether you want to use the Dictionary field and its attributes.

Note:
From Release 4.6C, the element name of an input/output field can refer to the
ABAP data type STRING. Remember, though, that the maximum length of an
input/output field on the screen is restricted to 132 characters. You can only
define input/output fields in the Screen Painter that fit on a single line.
Characters in a string that are longer than this are truncated.
The element in the ABAP program or ABAP Dictionary can, however, be of any
length.

There are two new field formats in the ABAP Dictionary - STRG and RSTR. For
further information, refer to Field Formats [Page 348].

Text Specifies a field's text. If you want to use an icon instead of text, leave this field
blank.

Dropdown This attribute only applies to input/output fields. If you choose List box, you can
display a list of entries for the field, from which the user can select one.

The width of the list is determined by the VisLg (visible length) fields. The height is
automatically set by the system. If the list box contains a large number of entries,
vertical scrollbars automatically appear.

You assign a value list to the output field using the ValueID. The default value of
this is the name of the input/output field (Name attribute).

How the value list is displayed depends on the entry in the Input help attribute. For
further information, refer to the Input help section of Program Attributes [Page
341].

 SAP AG BC ABAP Workbench Tools

General Attributes

April 2001 337

With icon Sets an icon value. Only use this attribute for output fields.

For a list of all existing icons including length and quick info texts, refer to the
table ICON (or Transaction ICON).

Icon name Identifies an icon for a keyword. If you specify an icon that is not allowed for a
field, the system returns an error message. To display only the icon without a
label, leave the Field text empty. For templates, you set the Icon Name attribute at
runtime.

Usability guideline: Icons do not need an explanatory text if the meaning of the
icon describes the element exactly. The meaning of the icon is always available in
the quick info text.

Quick info Identifies an icon's info text. This text is visible when the user holds the cursor
over an icon. The ICON table defines the default Quick Info value for each icon.
To change this default text (or leave it blank), use the Quick Info field.

Usability guideline: All icons need a quick info text, since no icon is self-
explanatory.

Scrollable Sets the scroll function. Use this attribute if the DefLg value is greater than the
VisLg value. When Scrollable is set, the system activates scrolling for the field.

If you use Dictionary or program fields that are too long for your screen, do not
forget to set Scrollable and to reduce the field's visible length as needed.

Line Specifies the line where the screen element appears. The system sets this
attribute automatically.

Column Identifies the column where the element begins. The system sets this attribute
automatically.

Height Specifies the height of an element in lines. Text labels and entry elements always
have a height of 1.

DefLg Defined length. Identifies the actual length of the field in the Dictionary or your
program.

VisLg The length of an element displayed on the screen. Set this attribute if you want
the screen element to have a length different from its defined length.

You must set the attribute Scrollable if you want to make visible length less than
the defined length. You can only change the visible length for input/output
templates or for elements in table columns. In the latter case, VisLg may exceed
DefLg. For all other elements (except elements containing icons and input/output
fields with the Dropdown attribute), the visible length is the same as the defined
length and cannot be changed.

Groups Modification groups This attribute allows you to update several fields at once. You
can assign each field to up to four modification groups. To assign a field to a
modification group, enter the three-character group name in the appropriate
column.

FctCode Function code: This attribute is only for pushbuttons and input/output fields with
the Dropdown List box attribute. If the user presses a pushbutton, the system sets
the command field to the 20-character code you enter here.

This value is not checked against values you specify in the Menu Painter.

BC ABAP Workbench Tools SAP AG

General Attributes

338 April 2001

FctType Specifies the event at which the field is processed (for example, AT EXIT-
COMMAND).

 SAP AG BC ABAP Workbench Tools

Dictionary Attributes

April 2001 339

Dictionary Attributes
For further screen element attributes, refer to General Attributes [Page 336].

The Dictionary attributes comprise the following:

Attribute Description and Usability Guidelines

Format Data type. The data type determines what checks (valid date, numeric
values) the system should perform on field input and how to convert the
field for input/output. This field is always blank for keywords. For a list of
the available data types, see Defining the Field Format [Page 348].

From Dict. Specifies the current ABAP Dictionary reference. The system sets this
attribute if you created this field by copying it from the Dictionary.

If you assign a name to a new element or change the name of an existing
element so that the name contains a - (dash), the system checks whether
the field exists in the Dictionary. If the name exists, the systems asks if
you want to refer to the Dictionary field or not.

Modified The system sets this attribute if it detects a difference between the
Dictionary definition for the field and the way it is used in the screen. Set
this attribute if want to use a keyword that diverges from its Dictionary
definition.

Conv.Exit If you want the system to use a non-standard conversion routine for the
conversion of field input, specify a four-character code here. There are
two supported conversion routines:
CONVERSION_EXIT_<name>_INPUT

CONVERSION_EXIT_<name>_OUTPUT

See the SAPCNVE program documentation for more information.

Search help Allows the user to specify a search help as input to the element. Enter a
four-character search help file name or the name of a field that contains
the file name. In the latter case, prefix your input with a : (colon). For more
information on search helps, refer to the ABAP Dictionary [Ext.]
documentation.

Reference Field For tabstrip controls: Establishes the link between a tab title and a
subscreen area.

For currencies and quantities: Specifies a currency or unit key. This
attribute is valid only for fields of type CURR (currency) or QUAN
(quantity). If the screen element contains a currency and the field type is
CURR, you must enter the currency key field belonging to the currency
(CUKY).
If the screen element contains a quantity and the field type is QUAN, you
must enter here the unit key field belonging to the quantity (UNIT). If the
screen element is from the Dictionary, the system takes over the
reference field without allowing any changes.

Parameter ID ID for a SET/GET parameter (up to 20 characters long). This attribute is
used with either the SET parameter or GET parameter attribute.

BC ABAP Workbench Tools SAP AG

Dictionary Attributes

340 April 2001

SET parameter

GET parameter

Set and display default in an element. If you choose Set Parameter, the
system stores the value entered by the user in the relevant Parameter ID
parameter. If you choose Get Parameter, the system displays the value in
Parameter ID in the element instead of the initial value.

Foreign key check Determines whether the system performs a foreign-key check for the field.
The field's definition in the ABAP Dictionary defines the foreign-key check.

Upper/Lower case Set this attribute if your program handles the user's input as a literal. If
not, the input is converted to all upper-case.

Usability note: Set this attribute wherever possible. Mixed case input is
easier to read than uppercase.

 SAP AG BC ABAP Workbench Tools

Program Attributes

April 2001 341

Program Attributes
For further screen element attributes, refer to General Attributes [Page 336].

The program attributes comprise the following:

Attribute Description and Usability Guidelines

Input field Defines an element as an input field. If the output field attribute is not set,
the data in this element is processed during the transaction, but not
displayed. However, you can set both, as is the default when creating a
new template.

Output field Defines an element as an output field. Choose this attribute for text
templates that the program can use to display output. You cannot input
data in these elements unless the input field attribute has also been set.

Output field only Prevents display-only elements from being changed into input elements at
runtime. This attribute is useful when a program attempts to set all input
elements globally back to "ready for input". In this case, the input
templates and the input/output templates return to input readiness, but the
elements that are marked Output only are not affected by such a change.
(For example, in the Workbench, the Display<->Change function makes
use of this attribute.)

Usability note: Use this attribute for dynamically-set field names. The
names are then displayed two-dimensionally and in a proportional font in
the same way as static field labels.

Required field If you set this attribute, the user must enter a value in the field. Required
fields appear on the screen containing a question mark (?).

PossEntry This attribute can only be set (and is only displayed) for input/output fields
with the attribute Dropdown and the entry List box. You use it to
determine how and when the value list for a dropdown list box is
generated. There are two possible entries:

� Space
The system provides standard help. The help processor is started in
the PBO and fills the value table automatically before sending it to the
Value Request Manager. The sources are domain fixed values, value
tables, and search helps.
If the input/output field is linked to a PROCESS ON VALUE
REQUEST module, this takes priority over the automatic process
described above.

� A from program
The application itself determines the values in a PBO module and
passes the table and ValueID (Name attribute) to the Value Request
Manager using the function module VRM_SET_VALUES.

BC ABAP Workbench Tools SAP AG

Program Attributes

342 April 2001

Poss Entr. button Specifies whether a possible entries pushbutton should appear beside the
element. The attribute does not appear for listbox elements with the
dropdown attribute. If the element has possible entries, you can enforce
or suppress the display of the entries button using this field. The system
sets this field automatically for fields that specify foreign key checking or
value lists in the ABAP Dictionary. This field is also set automatically for
fields of type TIMS or DATS.

Usability note: You should only change the value of this field if the value
set automatically is incorrect for technical reasons.

Right-justified Right justifies numerical fields in an element. You can also display
keywords in this way (for example, when defining headers).

With leading zeros Left justifies values in numerical fields with leading zeroes.

*-entry Allows the user to enter an * (asterisk) in the first position of the element.
The system ignores the asterisk and transports input starting from the
second position. Transport is determined by the conversion guidelines in
the field format. However, the first-character asterisk triggers a flow logic
module you declare with:

FIELD... MODULE... ON *-INPUT.

Without reset Prevents the reset character (!) from being used to delete input from an
SAP field.

Without template Prevents special characters from being treated differently. If the user
enters special characters as part of the input, they are transferred to the
screen as regular text. If you set this attribute, you cannot set the
Req.entry attribute.

 SAP AG BC ABAP Workbench Tools

Display Attributes

April 2001 343

Display Attributes
For further information about screen element attributes, refer to General Attributes [Page 336].

The display attributes comprise the following:

Attribute Description and Usability Guidelines

Fixed font Displays input/output fields and text fields in a nonproportional) font.
To use Fixed font for output templates, you must also have defined
the element as an output only field.

Usability note: Do not set this attribute, since fixed fonts are more
difficult to read than proportional fonts.

Bright Highlights an element.

Usability note: Do not set this attribute for more than 10% of the
information on a screen.

Invisible Set this attribute if you want the element to be invisible.

2-dimensional Displays elements without the three-dimensional shading that
normally appears around the element border. This field is
automatically set when you use an icon.

Usability note: Do not set this attribute, since field display is
automatically optimized by the system.

As label left This attribute is used for text fields and input/output fields that are
only used for display purposes (Input field attribute not set).
If this attribute is set, the text field is linked to the screen element on
its right in the same line. At runtime, the text field appears as a label
for that screen element, that is, it appears to the left of the screen
element.
If a field has an ABAP Dictionary reference, this attribute is preset. .

As label right This attribute is used for text fields and input/output fields that are
only used for display purposes (Input field attribute not set).
If this attribute is set, the text field is linked to the screen element on
its left in the same line. At runtime, the text field appears as a label
for that screen element, that is, it appears to the right of the screen
element.

Double-Click
sensitive

Makes a screen element double-click sensitive (hotspot).
You can only set this attribute for text fields and input/output fields.
If you set this attribute, double-clicking the element at runtime
triggers an action.

BC ABAP Workbench Tools SAP AG

Display Attributes

344 April 2001

The Reverse video, Blinking and Underlined attributes, as well as an individual color
scheme for each element (all available in R/2), are not supported in R/3. The color
scheme is now defined for the system as a whole.

 SAP AG BC ABAP Workbench Tools

Tabstrip Control Attributes

April 2001 345

Tabstrip Control Attributes
For further screen element attributes, refer to General Attributes [Page 336].

Attribute Description and Usability Guidelines

Resizing

Vertical/horizontal

Indicates that the tabstrip changes its size when you change the height
(vertical resizing) or width (horizontal resizing) of the window. Set this
attribute if you want the tabstrip control always to appear in proportion to
the screen.

Min. lines

Min. Columns

Specifies the minimum number of lines that can be displayed when you
resize vertically. It is the height of the largest subscreen area in the
tabstrip control.

The minimum number of columns that can be displayed when you resize
horizontally. It is the width of the largest subscreen area in the tabstrip
control

Usability note: By choosing the values carefully, you can avoid the
bottom edge of the tabstrip control moving up or down when you choose a
new tab page.

If the screen contains a variable step loop, vertical resizing is no longer available.

BC ABAP Workbench Tools SAP AG

Table Control Attributes

346 April 2001

Table Control Attributes
For further screen element attributes, refer to General Attributes [Page 336].

The following table control attributes are available:

Attribute Description and Usability Guidelines

Tab title Number of tab titles in the tabstrip control. The field texts <field1> to <field#>
are preassigned.

Table type Indicates whether the table control is for data entry or selection.

W/ ColHe This attribute allows you to create column headings as text fields or
input/output fields.

W/ Title This attribute allows you to create a table title as a text field or an input/output
field. You must create the title separately.

Configbl Allows you to save the current setting of the table control attributes to a file at
runtime. The system retrieves the settings from this file whenever the table is
displayed.

Usability note: Switch off this attribute if there is nothing to configure (for
example, when the table consists of a single column that is always displayed
in full) or if the table control is modified in the program.

Resizing Indicates a table supports vertical and/or horizontal resizing. Set this if you
want the table to change with a window's size. For further information, refer to
Tabstrip Control Attributes [Page 345]

Separators Inserts vertical separator lines between the table fields (columns) and
horizontal lines between the table rows.

Usability note: Use horizontal separators with very wide table controls.

Line sel. Allows line selection. Choose None, Single, or Multiple.

Column sel. Allows column selection. Choose None, Single, or Multiple.

w/ SelColumn Specifies whether a line selection column appears with the table. The column
is stored internally as a checkbox. For this reason, the selection column
requires a name. Enter a name in the space provided.

Fixed Columns Excludes one or more columns from horizontal scrolling. Enter the number of
columns from the left that you want to fix.

 SAP AG BC ABAP Workbench Tools

Custom Container Attributes

April 2001 347

Custom Container Attributes
For further screen element attributes, refer to General Attributes [Page 336].

Attribute Description and Usability Guidelines

Resizing

Vertical/horizontal

This attribute determines how the custom control behaves when you
change the height (vertical resizing) or width (horizontal resizing) of the
window. Set this attribute if you want the custom control always to be
displayed in the same proportions to the screen size.

Min. lines

Min. columns

The minimum number of lines of the control that can be displayed when
you resize vertically.

The minimum number of columns of the control that can be displayed
when you resize horizontally.

BC ABAP Workbench Tools SAP AG

Choosing Field Formats

348 April 2001

Choosing Field Formats
The field format determines how you edit the element attributes. A screen element can have one
of the following formats:

Format Description

ACCP Posting period

Format: YYYYMM.

Internal format: C(6)

CHAR Character

Character string (in ASCII or EBCDIC format).

Internal format: C(n)

CUKY Currency key

Internal format: C(5)

CURR Currency field

Corresponds to an amount field DEC, points to a field of type CUKY.

Internal format: P

DATS Date

Output determined at run-time.

Internal format: D(8)

DEC Calculation field

Calculation or amount field with decimal places and, if required, decimal point and
plus or minus sign.

Internal format: P

INT1 1-byte integer

Internal format: X(1)

INT2 2-byte integer

Internal format: X(2)

INT4 4-byte integer

Internal format: X(4)

LANG Language key

Internal format: C(1)

NUMC Numeric field

Field of any length comprising only numeric characters (for keys, not for calculation).

Internal format: N(n)

 SAP AG BC ABAP Workbench Tools

Choosing Field Formats

April 2001 349

PREC Accuracy

Accuracy of a QUAN field.

Internal format: X(2)

QUAN Quantity

Points to a field in UNIT format and to a field in PREC format, which specifies
accuracy.

Internal format: P

RAW Hexadecimal representation of the internal value (bit sequence) of any field.

STRG String with variable length

RSTR Byte sequence with variable length in hexadecimal format

TIMS Time in format HHMMSS.

Internal format: T(6)

If the user enters blanks or the reset character (!), the system returns blanks. The
value must be numeric. The numbers on the left must not exceed 240000. The
minutes and seconds should not be greater than 59.

If you want to prevent use of blanks, you must prohibit reset. To do this, choose the
attribute No reset.

UNIT Unit key

Field with unit key.

Internal format: C(n)

BC ABAP Workbench Tools SAP AG

Testing Screens

350 April 2001

Testing Screens
Testing allows you to check a simulation of the screen as it will appear at runtime. If you have
already programmed the flow logic, you can choose whether to simulate the screen with or
without it.

Procedure
1. Choose Screen � Test...

The system displays a dialog box for the runtime simulation. :

2. If necessary, change the window coordinates. (These determine the size of the simulation.)

3. Set the scope of the simulation.
If you want to include the flow logic in the simulation, select Complete flow logic. Otherwise,
the flow logic is not included, and you can only test the screen layout.

4. Choose Continue.
The system simulates the screen.

 SAP AG BC ABAP Workbench Tools

Checking Screens

April 2001 351

Checking Screens
In order to check a screen's syntax, data consistency, or layout, you use the Check function.

Syntax Checks
Choose Screen � Check � Syntax to check the syntax within the Screen Painter (attributes and
flow logic). If an error occurs, the system displays the error type in the status line and positions
the cursor at the relevant location. If the syntax check runs without error, the system returns a
success message. You can then Save or Generate your screen.

Screen Consistency
Choose Screen � Check � Consistency to check data consistency between a module pool, the
ABAP Dictionary, and a screen. The system checks whether the flow logic contains an object
(field or module) or the field list contains a field that is not defined in the ABAP Dictionary or the
module pool.

The Consistency function also checks the consistency of any screen attributes specified in the
fields Next screen and Cursor position. In particular, it checks whether the next screen that you
have specified actually exists, and whether the field specified as the cursor position exists.

The Consistency function also checks the search help, reference field, and other attributes. In
this way, you can detect errors in advance and eliminate them. The system displays the errors in
a hit list.

Violations of SAP Standards
If you choose Screen � Check � Layout, the system checks whether the layout of your screen
(in the fullscreen editor) corresponds to the SAP ergonomic standards. Some of the checks
include:

� whether the fields are aligned and positioned correctly on the screen

� whether boxes are positioned correctly

� how often you use display attributes

After a check, the system displays a hit list sorted by priority. For each error, the system offers a
solution. However, these errors do not influence the processing of the screen. You can generate
a screen regardless of layout errors.

BC ABAP Workbench Tools SAP AG

Saving, Activating, and Deleting Screens

352 April 2001

Saving, Activating, and Deleting Screens
Saving
Each time you make changes to a screen, you should save it. To save the screen, choose Save.
The system saves all components attached to the screen (screen attributes, layout, element list,
screen flow logic).

Activating
You can only call a screen in a transaction if a runtime version already exists. You create a
runtime version of a screen by activating it. To do this, choose Screen � Activate (or the Activate
icon). Whenever you activate a screen, it is automatically saved as well. After activation, the
status line contains the message:

Screen saved and activated.

You should check a screen for consistency before you activate it. Sometimes you
might want to activate a screen even though it contains inconsistencies (for example,
for testing purposes). If these inconsistencies are severe or the screen's flow logic
contains severe syntax errors, the system will not create an active version of the
screen.

Deleting

Before you delete a screen, you should check its where-used list.

To delete the screen, select it and choose Screen � Delete. The system deletes
everything associated with the screen, including its flow logic.

 SAP AG BC ABAP Workbench Tools

Menu Painter

April 2001 353

Menu Painter
The Menu Painter is a tool with which you design user interfaces for your ABAP programs.
This section tells you how to create and use the interface, and how to define the functions that
you use within it.

If you want to use the Menu Painter in conjunction with the Modification Assistant,
refer to Modifications in the Menu Painter [Ext.].

BC ABAP Workbench Tools SAP AG

The Menu Painter: Introduction

354 April 2001

The Menu Painter: Introduction
ABAP programs contain a wide variety of functions, which fall into different categories within the
user interface. It is important for users to be able to differentiate between these categories, and
to choose the right function easily. In the R/3 System, you arrange functions using the Menu
Painter.
An instance of the user interface, consisting of a menu bar, a standard toolbar, an application
toolbar, and a function key setting, is called a GUI status. The GUI status and GUI title defines
how the user interface will look and behave in an ABAP program.

 SAP AG BC ABAP Workbench Tools

 The Menu Painter: Introduction

April 2001 355

Components of the User Interface

Title bar

Menu bar

Standard toolbar

Application toolbar

Function key setting

GUI Status

GUI Title

Some statuses do not use all of these objects. For example, the status of a modal
dialog box uses only function keys and an application toolbar.

BC ABAP Workbench Tools SAP AG

The Menu Painter: Introduction

356 April 2001

Basic Concepts
• The principal object of a user interface is the GUI status. This can be assigned to any screen

(screen, selection screen, or list). Technically, it consists of a reference to a menu bar, a
standard toolbar, and a function key setting.

Status 100 Status 200

Menu bar Application toolbar

Standard toolbar Function keys
M 1 T 1 S 1 F 1

Key settings

• Different GUI statuses can refer to common components.

• A program can have many GUI statuses and titles. These represent the different modes in
which an application may operate.

For example, a transaction might have two statuses - “Change” and “Display. In
change mode, the delete function is active, but in display mode it is not.

• Several different screens can use the same status.

• You set the GUI title of a screen independently from its status.

 SAP AG BC ABAP Workbench Tools

 The Menu Painter: Introduction

April 2001 357

BC ABAP Workbench Tools SAP AG

The Menu Painter Interface

362 April 2001

The Menu Painter Interface
From the initial screen of the Menu Painter, you choose a status of a program, and then the work
area is displayed. Here, you can edit all of the components of the screen.

From the worksheet, you can create a menu bar, define menu functions, assign F keys,
customize the standard tool bar, and create an application toolbar.

To maintain the menu bar, application toolbar, or function key settings, click the Expand icon next
to the relevant area.

 SAP AG BC ABAP Workbench Tools

 The Menu Painter Interface

April 2001 361

Interface Object List
The Menu Painter keeps lists of all components of the GUI. These are used for component
administration, and have functions such as Create, Rename, Copy, and so on. For example, the
menu list contains the entries from all of the menu bars in the program. In all, there are six
different lists (status list, menu list, function list, title list, menu bar list and function key setting
list). You can access any of these lists from the Goto menu of the worksheet, or from the initial
screen of the Menu Painter. Regardless of where you make changes, on the worksheet or
through a list view, the Menu Painter updates and saves your changes in the same manner. You
can also change menu texts, function texts, icons, title texts and short documentation if you
access the list in change mode. The lists not only give a rapid overview of the interface
components for the whole program, they also make it easier to maintain their text entries.

BC ABAP Workbench Tools SAP AG

The Menu Painter Interface

362 April 2001

Saving Your Work
While you are within the Menu Painter, you do not have to save your work each time you move
from the Worksheet view to a display list view. In principle, you only need to save your work
before you leave the Menu Painter altogether. You do this using the Save function. However, if
you do forget to save, the system will remind you by displaying a dialog box before you leave the
Menu Painter.

 SAP AG BC ABAP Workbench Tools

 The Menu Painter Interface

April 2001 361

Activating the Interface
None of the changes you make to your interface are visible at runtime until you activate it. Once
you have completed and tested your changes, you must reactivate the interface. When you
activate the interface, the system creates a load version of it. After activation, your last set of
changes becomes visible in all programs that use the interface.

See also:
Inactive Sources [Page 509]

BC ABAP Workbench Tools SAP AG

The Menu Painter Interface

362 April 2001

 SAP AG BC ABAP Workbench Tools

Menu Painter: Initial Screen

April 2001 363

Menu Painter: Initial Screen
Starting the Menu Painter
To start the Menu Painter, choose the corresponding pushbutton on the initial screen of the
ABAP Workbench, or enter Transaction SE41.

Use
From the initial screen of the Menu Painter, you can quickly gain an overview of all of the
components of the user interface of an ABAP program, and take advantage of the efficient
navigation functions. In particular, you can restrict yourself to a section of the user interface for
editing.

From the initial screen you can:

� Create new statuses

� Test existing interfaces

� Display or change components of the interface

Components

Choose To

Status Open the Menu Painter work area

Interface objects Display all user interface objects for the current program

Status list Display a list of all GUI statuses for the current program

BC ABAP Workbench Tools SAP AG

Menu Painter: Initial Screen

364 April 2001

Menu bars Display a list of menu bars, sorted by status

Menu list Display a list of all menus

Function key settings Display the list of function key settings

Function list Display a list with all function codes

Title lisrt Display a list of all GUI titles for the current program.

You can switch from any of the above lists into any other using the Goto function.

 SAP AG BC ABAP Workbench Tools

Creating a GUI Title

April 2001 365

Creating a GUI Title
You should create a GUI title for each screen in a program. Titles help to orient the user: this is
especially useful for transactions with several screens. To create a GUI title from the Repository
Browser:

Procedure
1. Choose Status from the object list.

The system displays a list of possible program objects.

2. Select GUI title.

3. Enter a title code (up to 20 characters).

4. Choose Create.

The system displays a dialog box for the title bar information.

5. Enter the title you want to appear at the top of your screen.

6. Choose Save.

Result
You have now created a GUI title that you can set in an ABAP program using the following
statement:
SET TITLEBAR <TITLECODE>.

If you do not set a title, the system uses a standard title.

Using Variables in Titles
To determine a title at runtime, you can use an & (ampersand) with your title text.

At runtime, these variables are replaced with the values that you specify. To set a titlebar
containing variables, use the following ABAP statement:
SET TITLEBAR <titlecode> WITH <var1> <var2>... <varN>.

You can use up to nine variables in a title.
The variables are replaced with values according to their numbering (or simply from left to right if
the variables are not numbered). For further information, see the F1 help in
the ABAP Editor.

GUI titles remain set until you explicitly change them. At runtime, the system stores
the current title in the SY-TITLE system field.

BC ABAP Workbench Tools SAP AG

Defining a Status

366 April 2001

Defining a Status
To create a new status using the Menu Painter:

� Create the status

� Create the menu bar (or create a reference to an existing menu bar)

� Add menu entries

� Define new function key settings

� Define the standard toolbar (or create a reference to an existing one)

� Define the application toolbar (or create a reference to an existing one)

� Test the status

� Activate the status

Navigation
You can maintain a status from various points within the ABAP Workbench.

� By forward navigation from the ABAP Editor

� From the Object Navigator, under Program objects

� From the initial screen of the Menu Painter

 SAP AG BC ABAP Workbench Tools

Creating a GUI Status

April 2001 367

Creating a GUI Status
Procedure
1. Enter the name of your ABAP program.

2. Choose Status from the object list.

3. Enter a status name.

A status name can consist of up to 20 alphanumeric characters.

4. Choose Create.

The Create Status dialog box appears.

5. Enter a short description.

6. Select a Status Type.

The status type enables the Menu Painter to display the correct work area for the kind of
status you want to create. The following status types follow the standards in the SAP
Style Guide.

Status type: References to

Dialog status Menu bars, standard toolbar, function keys and application toolbar

Dialog box Function keys and application toolbar. Dialog boxes do not have menu
bars or a standard toolbar.

Context menu A context menu. Context menus contain a set of functions that you can
use to construct a context-sensitive menu. See also Creating a Context
Menu [Page 369].

7. Choose Continue.

The system displays the work area of the Menu Painter.

Define the components of the interface (or refer to existing interface components).

See also:
Defining Key Assignments [Page 377]

Creating Menu Bars [Page 372]

Defining Pushbuttons [Page 381]

Creating Standard Toolbars [Page 386]

8. Save your new status.

Result
The new status object appears in your program object list.

BC ABAP Workbench Tools SAP AG

Creating a GUI Status

368 April 2001

You cannot call a status in your program until you have activated it. (See also:
Testing and activating statuses [Page 387])

 SAP AG BC ABAP Workbench Tools

Creating a Context Menu

April 2001 369

Creating a Context Menu
Use
You can use the entries from a context menu that you define in the Menu Painter to construct a
context menu on a screen or list using the method LOAD_GUI_STATUS from the global class
CL_CTMENU.

Procedure
To create a context menu from the Object Navigator:

1. Select Program objects and choose Edit.

2. Enter the name of the ABAP program.

3. Choose GUI Status and enter the name of your context menu.
This is the name that you will pass to the importing parameter STATUS of the method
LOAD_GUI_STATUS.

4. Choose Create.
The Create Status dialog box appears, containing fields for the status attributes.

5. Enter a short text.

6. Select the status type context menu.

7. Choose Continue.
The work area for the context menu appears.

8. In the Code column, enter a function code, and under Text, the corresponding text for the
menu entry.

9. Repeat step 8 for each further function you want to add to your context menu.

10. If you want to enter a separator, choose Edit � Insert � Separator.

11. If you want to create a cascading menu, leave the Code field empty, and enter the menu text
for the cascading menu. You can then open it by double-clicking, and enter the required
entries.

Example:

BC ABAP Workbench Tools SAP AG

Creating a Context Menu

370 April 2001

Result
You have created a set of functions that can be used as a template for constructing a context
menu.

For information about how to define the relevant processing logic in ABAP, refer to
Context Menus [Ext.].

 SAP AG BC ABAP Workbench Tools

Working with Menu Bars

April 2001 371

Working with Menu Bars
Each new status that you create can have a reference to its own menu bar. You can either create
a new menu bar, or link to an existing one.

A menu bar may contain up to six menus. The system then adds the two standard menu bars -
System and Help. These two menu are always displayed at the right-hand end of every menu bar
in the R/3 System.
If you want to create a new menu bar, the status work area starts with an empty menu bar area.

Using Standard Proposals
When you create a menu bar, you can use the SAP ergonomic standards as a template. To
display this template, choose Display standards. You can adopt all of these menus as a starting
point and edit the list as you like.

To revert to a blank menu bar, choose Hide standards.

In a status for a list, you can also adopt individual default functions. Choose Display
list functions to display the defaults. You can either adopt the defaults, or change
them to suit your own requirements.

BC ABAP Workbench Tools SAP AG

Creating a Menu Bar

372 April 2001

Creating a Menu Bar
Procedure

1. With the Menu Painter in change mode, open an empty menu bar using the Expand icon
to the right of the Menu bar text field.

2. If you want to use the default settings, choose Display standards.

3. If you are using the standards, change the first menu title <Object> to something relevant
to your application.

4. If you are not using the standards, enter the menu titles as required.

For example:

5. Add menu entries [Page 369] to the menus.

 SAP AG BC ABAP Workbench Tools

Observing Standards

April 2001 373

Observing Standards
The Menu Painter supports the user interface standards outlined in the SAP Style Guide by
proposing names for GUI objects. You can display the proposals either from the initial screen of
the Menu Painter, or from the work area itself.

Choose Utilities � Help texts � Standards/Proposals.

Following these proposals helps you to create transactions with the look and feel of the standard
R/3 applications.

BC ABAP Workbench Tools SAP AG

Adding Functions to a Menu

374 April 2001

Adding Functions to a Menu
Once you have created a menu bar, you enter the individual menu entries. Each menu can
contain up to 15 entries.
A menu can contain any of the following:

� Function names (with function code and text)

� Submenus (pull-down menus)

� Separators

You may include submenus up to three levels deep.

Menu functions that logically belong together are grouped together using separators. This makes
the menu easier to use. Separators also make long menus easier to read by dividing them into
smaller parts.

Example:

Defining Menu Functions
To add functions to a menu that is already open in the Menu Painter:

1. Open a menu list in the menu bar by double-clicking the menu title.

The system opens the menu. The menu entries list contains the two columns Code and
Text.

2. In the Code column, enter a function code (this may be up to 20 characters long).

If you want to enter a function code that is longer than the input field, you must first
change the displayed length of the field in the user settings. (Choose Utilities �
Settings � User-specific.)

3. Enter the function text in the Text column.

The name you enter here appears in the menu at runtime. You can also determine the
contents of function texts at runtime (see Defining Dynamic Function Texts [Page 403]).

 SAP AG BC ABAP Workbench Tools

Adding Functions to a Menu

April 2001 375

4. Repeat steps 2 and 3 for each item in the menu.

Creating Cascading Menus
To add a cascading menu (sub-menu) to a menu:

1. Leave the Code column blank.

2. Enter a menu name in the Text column.

3. Double-click the cascading menu to open it.

The system opens the menu entry list for the cascading menu.

4. Complete the menu as you would any other.

Inserting Separators
1. Place the cursor on a line.

2. Choose Edit � Insert � Separator.

If you want to insert a separator between two existing menu entries, place the cursor
on the line before which you want to insert the separator.

Editing Menu Entries
You can cut, copy, paste, and delete menu entries.

1. Place the cursor on a line.

2. Choose Edit � Entry � Cut (or Copy, or Paste, or Delete).

If you double-click a function code, the Function Attributes dialog box appears. Here
you can, for example, change the icon assigned to a function.

Using Style Guide Proposals
Some functions are standard on SAP menus. If you are starting with the SAP standard menus,
these standard functions appear on your menus:

BC ABAP Workbench Tools SAP AG

Adding Functions to a Menu

376 April 2001

To use a standard function, activate it by entering a function code next to it. If you do not enter a
function code, the function remains inactive, and is not displayed at runtime.

 SAP AG BC ABAP Workbench Tools

Defining Function Key Settings

April 2001 377

Defining Function Key Settings
The R/3 System uses function keys to allow users quick access to commonly-used functions.
The function keys are special keys on the keyboard (F keys) which enable you to trigger
functions without having to use the menu.

To add function keys to your interface, you must assign each function code a specific function
key.

In the R/3 System, there is a distinction between:

� Reserved function keys

� Recommended function key settings

� Freely assigned function keys

The following function keys are reserved by SAP, and cannot be changed:

F1 Help

F3 Back

F4 Possible entries

F12 Cancel

The reserved or recommended function keys depend on the type of status. For
further information, see the SAP Style Guide. Choose Utilities � Help texts �
Standards/Proposals.

Procedure
To create a function key setting:

1. With the Menu Painter in change mode, open the work area.

2. Expand the F key assignment section of the work area.

3. Enter a function code in the first input field for the corresponding function key.
If you want to link to an existing function key setting, see Linking objects in a GUI status
[Page 393].

4. In the second input field, enter a text for the function. This text is then visible as
documentation whenever the user presses the right mouse button.

When you define a function key in the Recommended function key settings group,
the system proposes a default function description. However, you can overwrite this
text. You should only assign functions to these function keys that correspond to the
standard description, since these are intended to be used uniformly throughout the
R/3 System.

BC ABAP Workbench Tools SAP AG

Defining Function Key Settings

378 April 2001

 SAP AG BC ABAP Workbench Tools

Defining an Application Toolbar

April 2001 379

Defining an Application Toolbar
You can create pushbuttons for the most useful functions in your programs. These are arranged
in the application toolbar, which appears below the standard toolbar.

The following is an example of an application toolbar:

Notes:

� You must have assigned a function to a function key before you can include it in the
application toolbar.

� You can include up to 35 pushbuttons in the application toolbar.

� Application toolbar functions can contain an icon, a text, or both together.

� You can display inactive functions within the application toolbar if you have defined fixed
positions [Page 384] for it.

� You can also assign a dynamic text to a pushbutton at runtime. To find out how to assign
dynamic texts, see the section Defining Dynamic Function Texts [Page 403].

� You can group functions in the application toolbar using separators. See also Inserting
Separators [Page 385].

� The Style Guide also recommends you should only create pushbuttons for functions that are
also available on a menu. For further information, choose Utilities � Help texts �
Standards/Proposals.

Procedure
1. Assign a function to a function key. For details of how to do this, see Defining a function key

setting [Page 377]

2. Expand the application toolbar and enter a name for it.

3. Enter the function code (that you assigned to the function key in step 1) in one of the
pushbutton fields in the application toolbar, and press ENTER.

The system automatically fills in the text for the function definition, and an icon, if one
exists.

BC ABAP Workbench Tools SAP AG

Defining an Application Toolbar

380 April 2001

4. Repeat step 3 for each additional pushbutton.
When composing the application toolbar, you should adhere to the standards in the SAP
Style Guide.

5. If required, you can add icons to the pushbuttons. To find out more about assigning icons to
pushbuttons, refer to the section Icons in the Application Toolbar [Page 381].

 SAP AG BC ABAP Workbench Tools

Defining Icons in the Application Toolbar

April 2001 381

Defining Icons in the Application Toolbar
You can create icons for functions in the application toolbar. An icon can appear alone or with
text.

The set of icons available for use in the Menu Painter is not exactly the same as that
available in other editors (for example, in the Screen Painter). In the icon pool, all
icons are classified into different groups according to where they are used.

You can assign an icon to a function as follows:

� Enter an icon in the Icon name field in the Function list.

� Double-click a function in the function key setting.
The Function attributes dialog box appears, in which you can enter an icon in the Icon name
field.
You can display a list of possible icons using the possible values help.

BC ABAP Workbench Tools SAP AG

Defining Icons in the Application Toolbar

382 April 2001

Further Options
• If you want the icon to appear with an explanatory text, enter a text.

• Enter an Infotext if required. The system displays the quick info text when the user places the
cursor on the icon or holds down the right mouse button.

 SAP AG BC ABAP Workbench Tools

 Defining Icons in the Application Toolbar

April 2001 383

BC ABAP Workbench Tools SAP AG

Fixed Positions

384 April 2001

Fixed Positions
If you set the Fixed positions attribute, the pushbuttons in the application toolbar are not shifted
when you activate or deactivate functions dynamically.

Procedure
1. Start the Menu Painter [Page 353].

2. Switch to change mode.

3. Choose Goto � Attributes � Application toolbar or choose the padlock icon to the right of
the application toolbar

4. Set the Fixed positions option, and choose Continue.

Result

 The padlock icon next to the application toolbar appears 'locked'..

Inactive functions in the application toolbar will now appear grayed out, regardless of whether
they are inactivated in the Menu Painter or dynamically in the program.

 SAP AG BC ABAP Workbench Tools

Inserting Separators

April 2001 385

Inserting Separators
Use
As in menus, you can divide up application toolbars into groups of related functions. The
divisions are marked by separators.

Procedure
To insert separators into an application toolbar:

1. Open the work area of the Menu Painter.

2. Switch to change mode.

3. Position the cursor where you want to insert a separator.

4. Choose Edit � Insert � Separator.
The system inserts a separator at the cursor position.

Example:

Result
The application toolbar designed above would look like this at runtime:

BC ABAP Workbench Tools SAP AG

Creating the Standard Toolbar

386 April 2001

Creating the Standard Toolbar
� The standard toolbar is identical for all R/3 interfaces with status type Screen or List.

� If a function is inactive, its icon is grayed out.

� Interfaces with the status type Dialog box or List in dialog box do not have a standard toolbar.

Prerequisites
The functions that you want to assign to the standard toolbar must already have been assigned
to function keys. See also Assigning Function Keys [Page 379].

The SAP Style Guide recommends that you always activate at least the Back, Exit,
and Cancel functions in the standard toolbar.

Procedure
To create a new standard toolbar in the Menu Painter:

1. Open the work area of the Menu Painter.

2. Switch to change mode.

3. Enter the required function codes above the relevant icons in the Standard toolbar section.

 SAP AG BC ABAP Workbench Tools

Testing and Activating a Status

April 2001 387

Testing and Activating a Status
Testing allows you to check a simulation of the status as it will appear at runtime. The system
always uses the inactive version of the status where one exists.

Changes to a GUI status do not become visible in your application until you have
reactivated the status.

Testing a Status
1. Choose User interface � Test status.

The system displays the Status Simulation dialog box.

2. Enter a screen number and title if you want to simulate a whole screen. If you do not enter a
screen number, the system simulates the status using an empty test screen.

3. Choose Execute.

 A dialog box appears, containing the window coordinates.

4. Choose Continue.

The system simulates your status.

Activating a Status
To activate a status, choose User interface � Activate. When you activate a status, the system
automatically checks for syntax errors.

To check a status for syntax errors without activating it, choose User Interface �
Check syntax. This function checks the user interface and then produces a list of
syntax errors that you must correct before activating your status.

See also:
Inactive Sources [Page 509]

BC ABAP Workbench Tools SAP AG

Using the Extended Check

388 April 2001

Using the Extended Check
The Menu Painter's extended check examines all the GUI statuses in your program for
correctness, syntax errors, and completeness. You can correct any errors from within the
extended check. The extended check is based on the standards defined in the SAP Style Guide
[Ext.]. These are checked against the attributes that you have assigned to the components in
your interface.

Starting the Check
To start the extended check, choose Utilities � Extended check either from the initial screen of
the Menu Painter, or from the work area.

The system displays the result of the check procedure in the form of a hierarchical tree structure.
There are two error categories:

� Warnings

� Violations of SAP standards

Warnings include oversights such as undefined function keys or missing fastpaths. Violations of
SAP standards include incorrect function key settings or inadequate assignment of functions to a
menu,

Further Information
Choose the information icon to display more information about an error. Select a node in the
hierarchy tree and choose Information Here, the system also displays information about how to
correct the error. If you select the Warnings or Standard violations node, the system displays the
general documentation.

Correcting Errors
To correct errors in the extended check:

1. Open the appropriate node in the tree display.

2. Choose an object from the check list by double-clicking it. The system opens the
corresponding work area in the Menu Painter.

3. Ensuring that you are working in change mode, correct the error.

4. Choose Back to return to the tree display.

 SAP AG BC ABAP Workbench Tools

 Copying a Status

April 2001 389

Copying a Status
You can create a new GUI status by making a copy of an existing status.

There are two ways to do this.

• You can copy a status within a program. If you do this, there are two further possibilities:

– The target status uses the same components. In this case, the status references are
maintained, so any changes to components are visible in both statuses.

– The target status only uses some of the same components. In this case, you choose
which components are to be used. These are copied into the new status. In the new
status, all references to the components are replaced with references to the copy. This
means that changes to these objects are only visible in the target status. The references
to the other (unselected) components are kept. This principle is explained in the following
diagram.

Status Target
 status

M 1 A 1 K 1 T 1 *D 1 *

Copy

Selected components

 Reference to original

Reference to copies

Copy

M Menu bar

A Application toolbar

K Key setting

BC ABAP Workbench Tools SAP AG

Copying a Status

390 April 2001

• You can copy a status from a different program. In this case, the system copies all
components.

If you want to use a standard interface for your program, you should reference these
components to the original.

 SAP AG BC ABAP Workbench Tools

 Copying a Status

April 2001 391

Procedure
This procedure tells you how to create a new status by copying an existing status from the same
program. You start on the initial screen of the Menu Painter.

1. Choose Status.

The Copy Status dialog box appears. By default, the current program and status appear
as the To and Frm program and status.

2. Enter a new status for the To status.

3. Choose Copy.

In the next dialog box, you can choose whether the copy should use all of the same or
some of the same components. In the second case, you can choose a set of
components. The default option is Same components. However, you can also choose
Partly the same... (see above diagram). In this case, you must then select the
components that you want to use.

4. Select the components that you want to use.

5. Choose Copy.

The system creates the new status in the same program.

When you copy the status into another program, step 4 is omitted, since all components are
automatically copied.

BC ABAP Workbench Tools SAP AG

Copying a Status

392 April 2001

 SAP AG BC ABAP Workbench Tools

Linking Objects in a GUI Status

April 2001 393

Linking Objects in a GUI Status
There are two ways of creating a status:

� By creating new components with a unique reference to the status.

� By referring to existing components, and using them more than once in several different
statuses.
When you do this, you can create individual menu bars, menu functions, and function key
settings either for an arbitrary basic status, or from the appropriate overview list. New
statuses can then use these components.

Copying a Menu Bar
1. Create a new status that you want to link to a menu bar.

2. In the Menu Painter, choose Edit � Copy � Menu bar (or the Assign icon).
The system displays a list of all of the existing menu bars for the current program.

3. Choose a menu bar by double-clicking it.
The status links to the functions on the list. However, the functions are not yet active.

4. Activate the functions.

Copying a Function Key Assignment
1. Create a new status that you want to link to a function key setting.

2. In the Menu Painter, choose Edit � Copy � Function key setting (or the Assign icon).
The system displays a list of all of the existing function key settings for the current program.

3. Choose a function key setting by double-clicking it.
The system creates the link to the function key setting. However, the functions are not yet
active.

4. Activate the functions.

Copying an Application Toolbar
1. Create a new status that you want to link to an application toolbar

2. In the Menu Painter, choose Edit � Copy �Pushbutton settting (or the Assign icon).

The system displays a list of all of the existing application toolbars for the current
program.

3. Choose an application toolbar by double-clicking it.
The system creates a reference to the application toolbar. However, the functions are not yet
active.

4. Activate the functions.

Removing Links
There are several ways you can remove a link. The simplest method is to simply overwrite the
link with new information.

BC ABAP Workbench Tools SAP AG

Linking Objects in a GUI Status

394 April 2001

You can also use the Edit � Initialize function to reset a function key, menu, or pushbutton
setting.

 SAP AG BC ABAP Workbench Tools

Working with Overview Lists

April 2001 395

Working with Overview Lists
Reusable components of the program interface are grouped together in overview lists. These are
sorted by category into a menu list, title list, and so on. You can choose individual objects from
these lists and edit them. Objects that are not used within the interface are also included in the
lists.

Unused objects are not assigned to a status. For example, if you delete a menu from
the work area, the system does not delete it from the menu list, even though it no
longer appears in the interface. The menu remains in the menu list, and you can link
it in a new status reference later on if required.

Accessing Lists
To access the display lists from the worksheet, select the Goto menu and an object (Menu list,
Function list,...) You can switch back to the worksheet screen from a display list by selecting
Goto � Current status. You can also access the lists from the initial screen of the Menu Painter.

Displaying All Objects in a Category
If, for example, you want to maintain one or more menus within a user interface, you can access
the complete menu list by selecting Goto � Menu list. The menu list contains all the program's
menu functions. Within this list, you can create, delete, or copy menus as required. You can also
select a menu for editing by double-clicking its name.

Deleting Interface Objects
To delete a component, you must delete it explicitly from its display list. You can delete any sub-
object in a display list by choosing User interface � Delete � Sub-object. If the object is still
used somewhere in the program's interface, the system issues a warning. You can either confirm
the deletion or choose the Where-used list to display a list of all links to the object.

When you delete an object from a list, the system deletes the object and any links from your
program's interface.

Locating and Deleting Unused Objects
The Unused objects function generates a list of all objects that are defined in your interface but
not used. You can do this by choosing Utilities � Unused objects. The system displays a list of
the unused objects. If the Menu Painter is in change mode, you can delete any unused objects
directly from this list.

BC ABAP Workbench Tools SAP AG

Area Menu Maintenance from Release 4.6A

396 April 2001

Area Menu Maintenance from Release 4.6A
Overview of New Area Menu Maintenance [Ext.]

Create Area Menu [Ext.]

Edit Area Menu [Ext.]

Create Menu Entries [Ext.]

Edit Menu Entries [Ext.]

Import menus [Ext.]

Enhance Area Menu [Ext.]

Endless structure check [Ext.]

Object Directory Entry [Ext.]

Translate Area Menu [Ext.]

Display Area Menu [Ext.]

Additional information about Menu Entries [Ext.]

Additional information about Reports [Ext.]

Using Favorites [Ext.]

Buffering Area Menu [Ext.]

Transport Area Menu [Ext.]

Tips and Tricks [Ext.]

 SAP AG BC ABAP Workbench Tools

Functions

April 2001 397

Functions
You execute a function whenever you choose a menu entry or press a function key or
pushbutton. The element in the interface is linked to the ABAP program itself by a unique
function code, which you assign to the interface element when you create it in the Menu Painter.
When you choose a function, its function code is passed either to the system field SY-UCOMM
(in type 1 programs) or to the OK_CODE field (in transactions). You can address these fields in
your programs to find out which function the user has chosen.

Defining a Function
The definition of an interface function contains the following elements:

� Function code: Unique key for the function, which can be interpreted by the ABAP
program.

� Function Type: is used to determine processing control. Function types can, for
example, tell the system when or how to carry out a function. (See also: Using function
types [Page 398])

� Function text: A text that describes the function (such as Save).

� Icon name: Name of the icon to be displayed on a pushbutton.

� Icon text: Text to be output on the pushbutton in addition to the icon.

� Infotext: Text to be displayed in the status bar.

� Fastpath: Letter combination that allows users to choose functions without using the
mouse. See also Defining a fastpath [Page 399]

Specifying Further Options
� When you define a status, you can set functions to either active or inactive (see also

Activating and deactivating functions [Page 400]).This allows you to use a single
predefined menu bar, application toolbar, and function key setting in all statuses of an
application, since you can deactivate any functions that are not supported on the current
screen.

� You can also deactivate functions dynamically. This means that you do not need to
create a new status if you only want to deactivate individual functions (See also:
Deactivating functions at runtime [Page 402])

� You can also change function texts and menu texts dynamically (See also: Defining
dynamic function texts [Page 403] and Defining dynamic menu texts [Page 405]).

BC ABAP Workbench Tools SAP AG

Using Function Types

398 April 2001

Using Function Types
When you create functions, you define a function code and a name. When a user chooses a
function, the system stores the function code in the SY-UCOMM field. The code tells the system
which function a user chose.

You can also assign a type to your functions. Function types can, for example, tell the system
when or how to carry out a function. The system uses the following function types:

Type Meaning

Normal function code processing (for example, in a PAI module).

E Triggers an "at exit-command" module in the Process After Input (PAI) processing block
(MODULE <xxx> AT EXIT-COMMAND). When the user selects an E type function, the
system enters the "at exit-command" module before carrying out any input checks.

T Calls another transaction. Activating a T type function has the same effect as the
LEAVE TO TRANSACTION statement. The user cannot return to the original
transaction.

S Triggers system functions used internally in SAP standard applications. You should not
use type 'S' when creating your own functions.

P Triggers a function defined locally at the GUI. This function is not passed back to the
ABAP program (no SY-UCOMM or OK_CODE). Instead, it is processed at the
presentation server. This type of function can only currently be used for tabstrip
controls (Screen Painter).

Assigning Function Types
To assign function types:

1. Double-click a function in the GUI status.
The Function Attributes dialog box appears, which displays an overview of all of the
function attributes.

2. Choose a function type in the Function type field.

3. Choose ENTER to continue.

 SAP AG BC ABAP Workbench Tools

Defining a Fastpath

April 2001 399

Defining a Fastpath
Fastpaths allow you to enter a menu path using a single letter or sequence of letters instead of
the mouse.

Example:
You can choose the function Delete from the Edit menu by entering L.

You can also enter the entire menu path using the letter combination preceded with a period. In
our example above, you would enter.BL in the command field.

Rules
� The fastpath for a menu must be unique within the menu bar. The fastpath for a function

must be unique within its menu.

� The letter must be a part of the complete function name. For example, you could not choose
Z as the fastpath for the Create function.

In double-byte languages, the English fastpath keys are used. The frontend
displays the double-byte language text in the menu, with the English letter for the
fastpath in parentheses afterwards.

Maintaining a Fastpath

You do not have to maintain fastpaths explicitly. As soon as you generate the
interface, the system creates a set of default fastpaths automatically. You can then
change the fastpath if required.

1. To change the fastpath, open the status in the Menu Painter.

2. Choose Goto � Object lists � Fastpath.
The fastpath maintenance screen appears. Here, you can enter a fastpath for each function.

3. To display a default set of fastpaths, choose Propose fastpath.

4. Choose Save.

BC ABAP Workbench Tools SAP AG

Activating and Deactivating Function Codes

400 April 2001

Activating and Deactivating Function Codes
Within a status, functions can be active or inactive. Active functions are executable functions and
inactive functions are not executable. You should deactivate a function if the mode of your
application changes and the function is no longer available. For example, in view mode a function
like delete would not be active.

If inactive functions are assigned to the application toolbar, the system does not display the
function unless you have set the fixed positions [Page 384] option for the application toolbar.

In the standard toolbar, the system grays out inactive functions at runtime.

Inactive functions are grayed out in the menu. You can activate or deactivate menu options from
within the Menu Painter. You can also deactivate functions at runtime. To find out more about
dynamic deactivation, see Deactivating a Function at Runtime [Page 402]

You can activate or deactivate functions for:

� a single function in one status.

� several functions in one status (for example, after adopting a menu bar, application toolbar,
or function key setting).

� single functions in more than one status in an application (for example, when you want to add
new functions to a menu that is used more than once).

Procedure
To activate or deactivate a function code in the status work area of the Menu Painter:

Individual Functions
1. Position the cursor on the corresponding function in the function list.

2. Choose Extras � Function Active <-> Inactive.
The function code and description are now displayed in a different color. The system has
activated deactivated functions or deactivated active functions.

Several Functions
1. To activate several functions in the current status, select Extras � Active functions in

current status. The system displays a list of all functions used in the status.

2. You can now deactivate a set of functions by deselecting the corresponding checkbox. .

3. Choose Copy.

For Several Statuses
1. To activate several functions in the current status, choose Extras � Active functions in

multiple statuses.

2. Enter a function code

3. Choose Continue.
The system generates a list showing all the statuses where the function is used.

4. Select the statuses in which you want to make the change.

5. Choose Copy.

 SAP AG BC ABAP Workbench Tools

Activating and Deactivating Function Codes

April 2001 401

BC ABAP Workbench Tools SAP AG

Deactivating Functions at Runtime

402 April 2001

Deactivating Functions at Runtime
You can deactivate menu functions dynamically at runtime. To do this, use the EXCLUDING
addition when you set the GUI status. You can deactivate either individual functions, or a whole
group of functions.

Deactivating a Single Function
Suppose you have a GUI status called CREATE. This GUI status could have a List reservations
menu option with the function code LIST. If List reservations is active by default, you can
deactivate it at runtime with the following statement.
SET PF-STATUS 'CREATE' EXCLUDING 'LIST'.

If List reservations is included in a menu, the system grays out the function text. If the function is
assigned to a pushbutton, the pushbutton is not displayed unless you have set the fixed positions
[Page 384] option for the application toolbar.

Deactivating a Group of Functions
You can deactivate several functions at once by filling an internal table with all the function codes
you want to deactivate. Following our example above, and using an internal table called itab,
you would do this as follows:
SET PF-STATUS 'CREATE' EXCLUDING itab.

For further information about how to deactivate functions dynamically, see the online
documentation for the SET PF-STATUS statement.

 SAP AG BC ABAP Workbench Tools

Defining Dynamic Function Texts

April 2001 403

Defining Dynamic Function Texts
If you want a menu entry or a function to have a variable text at runtime, you can define dynamic
texts. To do this, you must define a field in your ABAP program that will contain the required text
at runtime.

When you define the text, use the structure SMP_DYNTEXT.

For example:

DATA: TEXT_1 LIKE SMP_DYNTXT,
TEXT_2 LIKE SMP_DYNTXT.

Procedure
1. Place the cursor on an empty function line.

2. Choose Edit � Insert � Func.with dyn. text.

The Insert Function with Dynamic Text dialog appears.

3. Enter a function code

4. Choose Continue.

The Enter function text dialog box appears.

5. Enter a program or ABAP Dictionary field name.

6. Choose Continue.

The system display the field in <> (brackets) as follows:

For information about how to create a dynamic text for a menu, see Defining
dynamic menu texts [Page 405]

Changing Function Texts
You can change static function texts to dynamic ones, and vice versa. To change a static text
into a dynamic text:

BC ABAP Workbench Tools SAP AG

Defining Dynamic Function Texts

404 April 2001

1. Double-click the function that you want to change.

The Function Attributes dialog box appears.

2. Choose Change text type.

3. Enter the name of the program or ABAP Dictionary field in the Field name field.

4. Choose Continue.

The system display the dynamic text in brackets <>.

Since the field name you specify to store the function name can be up to 132 bytes
long (as on the screen), the system can not always display the field in its full length.
You can change the field name by double-clicking the function or menu name.

 SAP AG BC ABAP Workbench Tools

Defining Dynamic Menu Texts

April 2001 405

Defining Dynamic Menu Texts
If you want to change menu texts dynamically in your program, you can assign a dynamic menu
text as follows:

1. With the Menu Painter in change mode, open the menu bar.

2. Position the cursor on a blank field in the menu bar.

3. Choose Edit � Insert � Menu with dyn. text.

4. Enter a short description in the Short documentation field, and the name of a program or
ABAP Dictionary field in the Field name field.

5. Choose ENTER.

BC ABAP Workbench Tools SAP AG

Setting a GUI Status and GUI Title

406 April 2001

Setting a GUI Status and GUI Title
The GUI status and GUI title defines how the user interface will look and behave in an ABAP
program. Users cannot choose functions until you have set the status in the program. You set a
status and title for a screen in the PBO (Process Before Output) module using the ABAP
keywords

� SET PF-STATUS

� SET TITLEBAR

For further information, see the F1 help in the ABAP Editor.

Example
Suppose you have a program with a screen 100. If you want this screen to appear with the

menus, standard toolbar, and application toolbar from GUI CREATE status, you must insert the
following code into a Process Before Output (PBO) module of screen 100:
SET PF-STATUS 'CREATE'.

To call screen 100 with the title bar '100', insert the following code into the same PBO module:
SET TITLEBAR '100'.

When you set a GUI status or a GUI title, it remains set until you explicitly set a new
GUI status or title. In the above example, if you call screen 200 without setting a new
status, screen 200 will appear with GUI CREATE status and title bar 100.

Using the Same User Interface in Several Programs
If you want to use a GUI status or GUI title from another ABAP program, you can use the SET
statement with the addition OF PROGRAM. For further information, see the F1 help for the SET
statement.

 SAP AG BC ABAP Workbench Tools

Evaluating Function Codes in the Program

April 2001 407

Evaluating Function Codes in the Program
When you create new menu and toolbar functions, you must assign a unique code to every
function. When the user chooses a function, its function code is placed in the system field SY-
UCOMM and the screen field OK_CODE.

The SY-UCOMM field always contains the current function code. You do not need to declare this
field in your module pool.

OK_CODE
The OK_CODE field stores the function code in your program. It is always the last field in the
field list of a screen. You need to assign a name to this field in the Screen Painter. Traditionally,
this field is always called “OK_CODE”. However, you can call it anything you like. Once you
have assigned a name to the OK_CODE field, you need to declare a field with the same name in
your module pool.

Example:
If your GUI status contains the function codes 'BACK', 'EXIT', and 'SAVE', for example, you need
the following code in your PAI module.
MODULE USER_COMMAND_0100.

CASE OK_CODE.

WHEN 'BACK'.

...

WHEN 'EXIT'.

...

WHEN 'SAVE'.

...

ENDCASE.

ENDMODULE.

BC ABAP Workbench Tools SAP AG

Function Builder

408 April 2001

Function Builder
The Function Builder allows you to create, test, and administer function modules in an integrated
environment.

If you want to use the Function Builder in conjunction with the Modification Assistant,
refer to Modifying Function Modules [Ext.].

 SAP AG BC ABAP Workbench Tools

Overview of Function Modules

April 2001 409

Overview of Function Modules
Function modules are ABAP routines that are stored in a central function library. They are not
application-specific, and available systemwide. The ABAP Workbench comes with a large
number of standard function modules.

Like form routines, function modules encapsulate program code, and provide an interface for
data exchange.

However, there are significant differences between function modules and form routines:

� Function modules must belong to a pool called a function group.

� They possess a fixed interface for data exchange. This makes it easier for you to pass input
and output parameters to and from the function module.
For example, you can assign default values to the input parameters. The interface also
supports exception handling. This allows you to catch errors and pass them back to the
calling program for handling.

� They use their own memory area. The calling program and the function module cannot
exchange data using a shared memory area - they must use the function module interface.
This avoids unpleasant side effects such as accidentally overwriting data.

� You call a function module by its name (which must be unique) in a CALL FUNCTION
statement.

The Function Builder allows you to develop, test, and document new function modules. You can
also use it to display information about existing function modules:

Administration Specifies information like the development class a function belongs to, the
person responsible for the module, a short description of the module.

Import Contains a list of the formal parameters that are used to pass data to a
function module. For further information, refer to Displaying Information
about Interface Parameters [Page 417]

Export Contains a list of the formal parameters that are used to receive data from a
function module. For further information, refer to Displaying Information
about Interface Parameters [Page 417]

Changing Contains a list of the formal parameters that are used both to pass data to
and receive data from a function module. For further information, refer to
Displaying Information about Interface Parameters [Page 417]

Tables Specifies the tables that are to be passed to a function module. Table
parameters are always passed by reference. For further information, refer to
Displaying Information about Interface Parameters [Page 417]

Exceptions Shows how the function module reacts to exceptions. For further information,
refer to Displaying Information about Interface Parameters [Page 417]

Documentation Provides information about the interface and exceptions

Source code Program code of the function module

Global data The global data used by the function module.

BC ABAP Workbench Tools SAP AG

Overview of Function Modules

410 April 2001

Main program Program code of the main program.

Function modules play an important role in the modularization of applications. You can use them
to encapsulate a particular function or group of related functions.

Modularization allows you to avoid redundancy. It also makes your programs easier to read and
understand.
Modularized programs are easier to maintain and keep up-to-date.

The modularization principle:

Function Groups
The Function Builder administers function modules that logically belong together in function
groups. Function groups are containers for function modules. They can also contain global data
declarations and subroutines that are available to all of the function modules in the group.

The following illustration shows the organization of function modules within a function group:

 SAP AG BC ABAP Workbench Tools

Overview of Function Modules

April 2001 411

BC ABAP Workbench Tools SAP AG

Overview of Function Modules

412 April 2001

For each function group <fgrp> there is a main program, generated by the system, called
SAPL<fgrp>.
The main program contains INCLUDE statements for the following programs:

� L<fgrp>TOP. This contains the global data for the function group.

� L<fgrp>UXX. These includes contain the function modules themselves. The numbering XX
indicates the chronological order in which the function modules were created. This includes
L<fgrp>U01 and L<fgrp>U02 contain the first two function modules in the function group.

� L<fgrp>F01, L<fgrp>F02... These includes can be used to write subroutines (forms) that can
be called as internal forms by all function modules in the group.

Displaying a Function Group
To display a function group, choose Goto � Function groups � Display group. A dialog box
appears in which you can enter the name of the function group.

 SAP AG BC ABAP Workbench Tools

Initial Screen of the Function Builder

April 2001 413

Initial Screen of the Function Builder

1. Start the ABAP Workbench.

2. Choose Function Builder.

The Function Builder initial screen appears:

3. Enter the name of the function module that you want to create, change, display, or test.
You can select any of the following components:

Interface Lists the interface parameters (import, export, tables, exceptions),
attributes, and parameter documentation.
If you are working in change mode, you can extend the parameter list.

Source code Displays the source code between the FUNCTION and ENDFUNCTION
statements.

Global data Displays the TOP include of the function group, containing the global
data declarations.

Main program Displays the main program with its list of includes.

BC ABAP Workbench Tools SAP AG

Initial Screen of the Function Builder

414 April 2001

4. Select one of the above components.

5. Choose Display or Change.

 SAP AG BC ABAP Workbench Tools

Looking Up Function Modules

April 2001 415

Looking Up Function Modules
Before creating a new application, you can search in the Function Builder to see if suitable
function modules already exist. You can do this in the Repository Information System or in the
Application Hierarchy.

Using the Repository Information System
To search for a module, choose Find from the initial screen of the Function Builder. The system
displays the standard Function Module search screen.

The Repository Information System's search screen offers you a number of selection options.
Only some of these options are displayed when you first call the screen. To view the rest of the
selection options, choose Edit � All selections :

Enter either a function group or a development class for a quick search. You can also limit your
selection to function modules of a particular type. You can search for remote function call (RFC)
modules or for those that are used in update routines.

You can also generate a list of only those function modules that are released for customers. For
more information about searching with the Repository, see The Repository Information System
[Page 496.

Using the Application Hierarchy
You can also search for function modules using the Workbench's Application Hierarchy. The
Application Hierarchy provides an overview of all the applications in your R/3 system. You can
use this hierarchy to display function modules associated with particular applications.

The Application Hierarchy [Page 502]

BC ABAP Workbench Tools SAP AG

Looking Up Function Modules

416 April 2001

1. In the Function module field of the initial screen of the Function Builder, or in the CALL
FUNCTION field of the insert statement dialog box, press F4.

2. Choose SAP applications in the Input Help Personal Values List dialog box.
The system branches to the SAP application hierarchy.

3. Open the application hierarchy down to the lowest level, and double-click a function
module to choose it.
The system jumps back to the point where you started your search, and inserts the name
of the function module in the corresponding field.

 SAP AG BC ABAP Workbench Tools

Getting Information about Interface Parameters

April 2001 417

Getting Information about Interface Parameters
A function module's interface determines how you can use the module from within your own
program. It is important that you understand a module's programming interface before you use
the module. There are five different interface parameters:

Name Explanation

Import Values transferred from the calling program to the function module. You cannot
overwrite the contents of import parameters at runtime.

Export Values transferred from the function module back to the calling program.

Changing Values that act as import and export parameters simultaneously. The original
value of a changing parameter is transferred from the calling program to the
function module. The function module can alter the initial value and send it back
to the calling program.

Tables Internal tables that can be imported and exported. The internal table's contents
are transferred from the calling program to the function module. The function
module can alter the contents of the internal table and then send it back to the
calling program. Tables are always passed by reference.

Exceptions Error situations that can occur within the function module.
The calling program uses exceptions to find out if an error has occurred in the
function module. It can then react accordingly.

To find out what parameters are needed to call a function module, enter the module's name in
the initial screen of the Function Builder and display the object component Interface:

The following display uses a tab, with separate pages for various parts of the interface
information (administration, formal parameters, exceptions, and documentation). Our example
contains a list of all import parameters and their further attributes:

BC ABAP Workbench Tools SAP AG

Getting Information about Interface Parameters

418 April 2001

Particularly important here is the information about which parameters must be passed when the
function module is called. If a parameter does not have to be passed, select the Optional
checkbox.
If the parameter does have to be passed, the checkbox is deselected.

Choose Changing or Tables to see the changing and tables parameters and whether they are
optional or required.
There is no Optional checkbox for export parameters, since they are always optional.
You can also specify the data type of a formal parameter by linking it to a data type in a type
pool. Type pools are ABAP Dictionary objects that allow you to define your own global types. If
you want to use the types in a type pool for formal parameters, you must declare the type pool in
the TOP include of the function group. You can then enter the types in the Reference type field
for formal parameters.
In the Reference field/structure field, you can enter ABAP Dictionary reference structures, against
which the system checks the actual parameters at runtime.
Use the Default field to assign a default value to a parameter. In the Reference field, you can
indicate whether you want to pass the parameter by reference or by value.

For more information about setting the attributes of parameters, see Specifying Parameters and
Exceptions [Page 428]

The Documentation tab page contains short descriptions of the parameters and exceptions. To
display further information about a particular parameter or exception, double-click its name.

 SAP AG BC ABAP Workbench Tools

Getting Information about Interface Parameters

April 2001 419

For a full description of the task of the function module, double-click the Short text field, or
choose Function module doc.

Displaying Function Module Attributes
The Administration feature of the Function Builder shows you a function module's attributes.
Administration information includes the function module's:

� Function Group

� Process type

� status

If you want to print out all a module's interface information, choose Function module � Print. This
option lets you specify the aspects of the function module (documentation, code, and so on) you
want.

BC ABAP Workbench Tools SAP AG

Calling Function Modules From Your Programs

420 April 2001

Calling Function Modules From Your Programs
You can call a function module from within any ABAP program by using the following statement:
CALL FUNCTION <function module>

 [EXPORTING f1 = a1.... fn = an]
 [IMPORTING f1 = a1.... fn = an]
 [CHANGING f1 = a1.... fn = an]
 [TABLES f1 = a1.... fn = an]
 [EXCEPTIONS e1 = r1.... en = rn
 [ERROR_MESSAGE = rE]
 [OTHERS = ro]].

You enter the name of the function module as a string. You pass parameters by assigning the
actual parameters to the formal parameters in lists following the EXPORTING, IMPORTING,
CHANGING, and TABLES options.

You assign parameters in the form <formal parameter> = <actual parameter>
If you assign more than one parameter within an option, separate them with spaces
(or by starting a new line).

� The EXPORTING options passes the actual parameter ai to the formal parameter fi. The
formal parameters must be declared as import parameters in the function module. The
parameters may have any data type. If you specify a reference field, the system checks
the parameter.

� The IMPORTING option passes the formal output parameter fi of the function module to
the actual parameter ai. The formal parameters must be declared as export parameters
in the function module. The parameters may have any data type.

� The CHANGING options passes the actual parameters ai to the formal parameters fi.
After the function module has been processed, the system returns the (changed) values
of the formal parameters fi to the actual parameters fi. The formal parameters must be
declared as changing parameters in the function module. The parameters may have any
data type.

� The TABLES option passes internal tables between the actual and formal parameters.
They are always passed by reference. The parameters in this option must always be
internal tables.

� The EXCEPTIONS option contains a list of special parameters that allow you to react to
errors in the function module. When an exception occurs, the function module processing
terminates. To take a concrete example: If exception ei is triggered, the system stops
processing the function module and does not pass any values back to the program. The
calling program receives the exception ei by assigning the value ri as a return code to
the system field SY-SUBRC. ri must be a numeric literal. You can then evaluate the
contents of SY-SUBRC in the calling program.

You can change the error handling in the function module by specifying an
ERROR_MESSAGE in the EXCEPTIONS list. Normally, you should only call messages

 SAP AG BC ABAP Workbench Tools

Calling Function Modules From Your Programs

April 2001 421

in function modules using the exception handling method (using the MESSAGE...
RAISING or RAISE statements within the function module). For more information, see
Understanding Function Module Code [Page 430]
When you use ERROR_MESSAGE, the system treats the message that are called
without explicit handling as follows:

� Messages with type S, I and W are ignored (but entered in the log if you are running
the program in the background).

� Messages with type E and A cause the function module to terminate as though the
ERROR_MESSAGE exception had been triggered (SY-SUBRC is set to rE).

If you enter OTHERS in the exception list, you can allow for all exceptions, even though
they are not listed. It acts as a default exception.

You can use the same number ri for different exceptions, as long as the exceptions
do not have to be more specific.

You can call a function module from an ABAP program by using the Insert Statement function in
the ABAP Editor as follows:

1. Position the cursor at the point where you want to insert the CALL FUNCTION statement.

2. Choose Pattern.

3. In the Insert Statement dialog box, select CALL FUNCTION.

BC ABAP Workbench Tools SAP AG

Calling Function Modules From Your Programs

422 April 2001

4. Enter the name of the function module.

If you do not know the name, you can search using the possible values help.

5. Choose Continue.

The system inserts the CALL FUNCTION statement, complete with the interface of your
chosen function module.

6. Add the parameters, and program any exception handling.

In our example, the function module is inserted into the ABAP Editor as follows:

7. If you need more information about the function module, you can use the ABAP Editor
help (F1). The Help dialog box appears. Select Function module, and enter the function
module name. Choose Continue.
The system displays the interface definition for the function module. From there, you can
display all of the other function module elements.

You must enter values for any parameters do not appear as comment lines in the
ABAP Editor (constants or parameters).

 SAP AG BC ABAP Workbench Tools

Calling Function Modules From Your Programs

April 2001 423

The importing interface is commented out. Remove the asterisks (*) before the
IMPORTING addition and the relevant parameters, and enter variables against the
parameters from which you want to receive values from the function module.

There are other parameters that you can use with the CALL FUNCTION statement if the function
is running in the update task or on a remote host.

When a function module runs in the update task, the system processes it asynchronously.
Instead of processing it straight away, the system waits for the next database update to be
triggered by a COMMIT WORK statement. Running a function module on a remote host means
that you call a function module within another SAP system or a non-SAP system.

For further information about how to call function modules from programs, see the Function
modules section of the ABAP User’s Guide [Ext.]

BC ABAP Workbench Tools SAP AG

Creating new Function Modules

424 April 2001

Creating new Function Modules
Function modules perform tasks of general interest to other programmers. Usually these tasks
are well-defined functions that all users need, regardless of application. Some well-defined tasks
include performing tax calculations, determining factory calendar dates, and calling frequently-
used dialogs.

When you write ABAP routines that other programmers might use, you should define these
routines as function modules. This means that you develop them in the Function Builder as
follows:

1. Check whether a suitable function module already exists. If not, proceed to step 2.

2. Create a function group, if no appropriate group exists yet.

3. Create the function module.

4. Define the function module interface by entering its parameters and exceptions.

5. Write the actual ABAP code for the function module, adding any relevant global data to
the TOP include.

6. Activate the module.

7. Test the module.

8. Document the module and its parameters for other users.

9. Release the module for general use.

Runtime Considerations
There are some runtime considerations you should be familiar with when writing function
modules:

� The CALL FUNCTION statement can pass import, export, and changing parameters
either by value or by reference. Table parameters are always transferred by reference.

� If you declare the parameters with reference to ABAP Dictionary fields or structures, the
system checks the type and length when the parameters are transferred. If the
parameters from the calling program do not pass this check, the calling program
terminates.

� At runtime, all function modules belonging to a function group are loaded with the calling
program. As a result, you should plan carefully which functions really belong in a group
and which do not. Otherwise, calling your function modules will unnecessarily increase
the amount of memory required by the user.

 SAP AG BC ABAP Workbench Tools

Creating a Function Group

April 2001 425

Creating a Function Group
1. Choose Goto � Function groups � Create group.

2. Specify the function group name and a short text.

3. Choose Save.

Function group names are freely definable up to a maximum length of 26
alphanumeric characters. Remember to observe the normal naming conventions for
the first character (A-X for SAP development, Y and Z for customers).

When you create a new function group, the system automatically creates a main program
containing two includes. Like any other programs and includes, you can display them in the
Repository Browser.

The name of the main program is assigned by the system. This is made up of the prefix SAPL
followed by the function group name. For example, the main program for function
group SXXX is called SAPLSXXX.

The names of the include files begin with L followed by the name of the function group, and
conclude with UXX (or TOP for the TOP include). The TOP include contains global data
declarations that are used by all of the function modules in the function group. The other include
file within the main program is used to hold the function modules within the group.

BC ABAP Workbench Tools SAP AG

Creating a Function Module

426 April 2001

Creating a Function Module
1. Enter the function's name in the field Function module.

2. Choose Create.

3. In the Enter function group dialog box, enter the function group to which you want to
assign the function module.

The Administration page of the Create function module screen appears.

4. Enter the following attributes

Attribute Explanation

Application Specifies the function's application group. Leave the field blank ("For all
applications") if your function is not application-specific.

Short text Describes the function module.

Process type Specifies the function type. Choose Normal unless you are writing a
function to be run in remote systems or in an update task.

 SAP AG BC ABAP Workbench Tools

Creating a Function Module

April 2001 427

General data Lists general administration information

5. Choose Save.

The Workbench automatically creates an include file for your function module, whose
name is eight letters long. For example, for the first function module in the function group
FGRP, the include file is called LFGRPU01. The next function modules will have include
files LFGRPU02, LFGRPU03, LFGRPU04, and so on.

For further information about the include programs, see Understanding Function Module Code
[Page 430]

BC ABAP Workbench Tools SAP AG

Specifying Parameters and Exceptions

428 April 2001

Specifying Parameters and Exceptions
The parameters and exceptions for a function module constitute its interface. The Function
Builder contains a tab page for each of the following interface components: tables, exceptions,
import, export, and changing parameters.

To set the parameters and exceptions of your function module:

1. Enter the function module name on the initial screen of the Function Builder.

2. Select Interface and choose Change.

3. Enter any further required information for the parameters (import, changing, export, or table).

Field Explanation

Parameter Name of the formal parameter, for identification

Reference field/

structure

A database field, component of an ABAP Dictionary structure, or an
entire ABAP Dictionary structure. This is the same as the ABAP
Dictionary field name in the Reference field/ reference structure column.

Use this field to create a field based on an ABAP Dictionary field. You
should always use a reference structure if the data in the parameter
must have the same structure as the reference field (for example, when
you want to add new entries to the database).

Reference type You can enter any system type, either generic or fully typed.

For further information, refer to the Data Types [Ext.] section of the
ABAP User's Guide.

Default This is the parameter's default value. Applies to import and changing
parameters only. The system transfers this value to the function module
if the caller sets its own value for that parameter.

Reference The parameter reference. Specify this if you want the parameter to be
called by reference instead of by value. When a parameter is called by
reference, the system points to the original parameter without making a
copy of it. The function module works with and, if necessary, alters the
original parameter and not a copy. Table parameters are always passed
by reference.

4. Enter the exceptions.

The exceptions screen only allows you to enter a text with which the exception can be
triggered in the function module.

5. You can also document the interface on this screen.

On the documentation screen, you can enter short descriptions of the parameters and
exceptions.
You can also write full documentation of the entire function module from here.
For further information, see Documenting and Releasing Function Modules [Page 441]

 SAP AG BC ABAP Workbench Tools

Specifying Parameters and Exceptions

April 2001 429

6. Save your entries.

BC ABAP Workbench Tools SAP AG

Understanding Function Module Code

430 April 2001

Understanding Function Module Code
The system predefines the organization of objects for a function group and its function modules.
When you create a function group, the Workbench automatically generates a main program,
global data, and source code. The system uses the format SAPL<fgrp> to name the Main
program. The <fgrp> variable is the function group's name.

For each successive function module in a function group, the Workbench automatically creates
an include file. You can view this include file by selecting Source Code on the Function Builder
initial screen. The system gives the include file a name using the form L<functgrp>U<nn>. For
example, in the function group FGRP, the first function module resides in include file LFGRPU01.
The subsequent function modules are in include files LFGRPU02, LFGRPU03, LFGRPU04, and
so on.

The Main Function Program
The Function Builder generates the main function program includes for you. The system uses the
L<functgrp>UXX form to name a main function program. So, for the function group FGRP, the
main functions include would be LFGRPUXX.

Writing Function Modules
Once you have defined the interface of your function module, you can start writing the code itself.

On the initial screen of the Function Builder, select Source code. The ABAP Editor appears, in
which you can write the code of the function module between the FUNCTION and
ENDFUNCTION statements.
The parameters and exceptions of the function module appear in the Editor as commented lines.

A few features to bear in mind when writing function modules:

 SAP AG BC ABAP Workbench Tools

Understanding Function Module Code

April 2001 431

Data Handling in Function Modules

� You do not declare export and import parameters in the source code of the function
module. The system does this automatically, using an INCLUDE program that inserts a
list of the parameters as comment lines in the source code.

� You can declare local data types and objects in function modules in the same way that
you would in subroutines.

� You can declare data using the TYPES and DATA statements in L<fgrp>TOP. This data
is then available to all of the function modules in a function group. The system creates
the data the first time a function module in the group is called. It always saves the values
from the last function module to be called.

Calling Subroutines from Function Modules
You can call various subroutines from function modules.

� You can write internal subroutines, adding them after the ENDFUNCTION statement.
These subroutines can be called from all function modules in the group. However, we
recommend that you only call them from the function module in which you wrote the
function module. This makes your function group easier to understand.

� If you want to create internal subroutines and call them from all of the function modules in
the function group <fgrp>, use the special INCLUDE programs L<fgrp>F<XX>.

� You can call any external subroutines from a function module.

Triggering Exceptions
Within a function module, you can address all exceptions using the names you defined in the
interface. Exceptions can be handled either by the system or by the calling program. You decide
this when you call the function, by assigning a numeric value to the exceptions that you want to
handle yourself. For further information, see Calling Function Modules From Your Programs
[Page 420].

Exceptions must be explicitly triggered.
There are two ABAP statements that may only be used in function modules that you can use to
trigger exceptions:

Syntax
RAISE <Exception>.

MESSAGE..... RAISING <Exception>.

The effect of these statements depends on whether you handle the exception in the calling
program or let the system process it.

� If you trigger the exception in the RAISE statement and the calling program is to handle
it, the function module processing is terminated, and the numeric value assigned to the
exception is placed in the system field SY-SUBRC. Further processing then takes place
in the calling program.

If the calling program fails to handle the exception, the system triggers a runtime error.

� If you use the MESSAGE... RAISING statement, the processing is similar if you want to
handle the exception in the calling program. If you want the system to handle the

BC ABAP Workbench Tools SAP AG

Understanding Function Module Code

432 April 2001

exception, there is no runtime error generated in this case. Instead, processing
continues, and the system displays a message with the defined type. To do this, you
must specify the MESSAGE-ID in the first statement of the include program L<fgrp>TOP.
The MESSAGE... RAISING statement also enters values in the following system fields:

� SY-MSGID (message ID)

� SY-MSGTY (message type)

� SY-MSGNO (message number)

� SY-MSGV1 to SY-MSGV4 (contents of the fields <f1> to <f4> that are included in the
message).

For further information, see the keyword documentation for the MESSAGE statement.

Here is an example for raising exceptions:

Suppose we have the following function module:

If N1 is unequal to zero, it divides Z1 by N1. Otherwise, it triggers the exception
DIV_ZERO.

 SAP AG BC ABAP Workbench Tools

Understanding Function Module Code

April 2001 433

Example: Program MDTEST calls the function MY_DIVIDE:

When you run the program, the output looks like this:
Result = 1,500000

If you replace N1 = 4 with N1 = 0 in the EXPORTING list, the program MDTEST
processes the exception DIV_ZERO by assigning the value 1 to SY-SUBRC. The
output now looks like this:
Division by zero

BC ABAP Workbench Tools SAP AG

Checking and Activating Modules

434 April 2001

Checking and Activating Modules
Before you can activate a function module, you must check to make certain that the module's
syntax is correct. Open one of the module's interface screens and use Function module � Check
to check your module. Checking Source Code [Page 111] explains in detail how to use this
feature.

Newly created function modules are automatically set to Inactive.

If a function module is inactive, the normal syntax check only checks that module. If you want to
check the module as part of the whole function group without activating it, choose Function
module � Check � Main program. The check program checks all of the function modules and
include programs regardless of whether they are active or inactive.

To activate a completed function, choose Function module � Activate. An activated function
module is included in all syntax-checking for the module's entire function group. When the
system checks an activated function module's syntax, the system actually applies the check to all
activated members of the function group. When you activate a function module, syntax-checking
is performed automatically.

See also:
Inactive sources [Page 509] in the ABAP Workbench.

Restoring the Active Version of a Function Module
You can replace the inactive version of a function module with its last active version by choosing
Function module � Return to active version. The inactive version is deleted.

 SAP AG BC ABAP Workbench Tools

 Testing Function Modules

April 2001 435

Testing Function Modules
Debugger [Page 444]

You should use the test environment in the Function Builder to test new function modules before
releasing them for general use. You can also use the test environment to examine functions
written by other developers before calling these modules from within your own programs. The
library's testing options let you determine if a function performs as it should and shows you if the
module returns expected results. To run a test:

1. Choose Test from the Function Builder initial screen.

The Test Function Module screen appears. It displays all of the import and changing
parameters of the function module.

2. Specify the data you want to transfer from your program to the function module.

Fill in values for the relevant import, changing, and tables parameters. To fill in single-
field parameters, enter the value in the displayed field. To fill in table/ structure
parameters, double-click on the parameter name.

3. Choose Execute.

The system runs the function module using your input and displays the values of the
export parameters that result:

BC ABAP Workbench Tools SAP AG

Testing Function Modules

436 April 2001

When you test a function module, the system displays any exceptions. The system also identifies
the time required to execute the module in microseconds. This is an elapsed-time measurement.
The measurement includes interrupt time as well as processing time. You should view this
elapsed-time as an estimate only.

 SAP AG BC ABAP Workbench Tools

 Testing Function Modules

April 2001 437

Other Test Options
The Function Builder contains more test options than simply running a function module. You can
also run a test in the debugger or create a runtime analysis performance file for a function. To
investigate a function module in debugging mode:

1. Choose Test from the Function Builder initial screen.

2. Specify the data you want to transfer from your program to the function module.

3. Select Debugging.

The system executes the function module in debugging mode. You can step through the
function's code and use all the options offered within the Debugger

To test a function module's performance, select Runtime analysis (Transaction SE30) from the
Test Environment for Function Modules screen. The system executes the function module and
records the function's performance in a special performance data file. Select Eval.rtime analysis
to display the results of the analysis.

BC ABAP Workbench Tools SAP AG

Testing Function Modules

438 April 2001

 SAP AG BC ABAP Workbench Tools

Saving Tests and Test Sequences

April 2001 439

Saving Tests and Test Sequences
The Function Builder offers you several further options that can be helpful when you are
developing your function. These options include:

� Saving test runs.

� Displaying old tests and their results.

� Comparing previous test results with results from a fresh test run.

� Composing a test sequence for repeated testing.

Saving a Test Run
execute the test and then select the Save icon. Enter a short description of the test so that you
can identify it better later on.

Displaying and Rerunning Old Tests
To display old tests that you have saved, enter the test screen in the Function Library and
choose Test data directory. You can view either the test parameters or the actual results.

Rerunning old tests shows you if the changes you have made in your function module affect the
data received by the calling program. To rerun a test using the same parameters:

1. Choose Test from the Function Builder initial screen.

The system displays the test environment.

2. Choose Test data directory.

3. Place the cursor on the test you want to reexamine.

4. Choose Test.

The system immediately reruns the same test and displays any differences in the results.

Using Test Sequences
1. Open the function module test environment.

2. Choose Goto � Test sequence.

3. Run a series of tests as you would normally, entering relevant parameters and selecting
Execute.

You can re-run the same function module several times or test different, related function
modules. For example, you can test a module that creates a new table record and then
test one that deletes the same record. If you want to test a series of function modules,
choose Function modules � Other FM after each test.

4. End the sequence by choosing Edit � New sequence.

The system lets you save your test sequence.

To display an existing sequence, choose Test seq. directory to display the sequence. You can
also run a test sequence by selecting Edit � Enter sequence. The system provides a window
where you can enter the names of all the modules you want to test. Select Execute and the
system lets you run each module in test mode one after the other.

BC ABAP Workbench Tools SAP AG

Saving Tests and Test Sequences

440 April 2001

 SAP AG BC ABAP Workbench Tools

Documenting and Releasing a Function Module

April 2001 441

Documenting and Releasing a Function Module
You document your function modules in the Function Builder. There are two kinds of
documentation - parameter documentation, and full function module documentation.

Interface Documentation
The parameter documentation must provide users with information about the different
parameters and exceptions.

1. Open the Function Builder and enter the name of the function module that you want to
document.

2. Select Interface.

3. Choose Change.

4. Choose the Documentation tab.
A list of all parameters and exceptions appears.

5. Enter a short text for each entry.

6. Save your entries.

To add extra documentation for a parameter or exception, double-click the
corresponding line on the Documentation page.
The long text editor appears. Enter your text and save it. You can now return to the
function module maintenance screen.

Function Module Documentation
Function module documentation contains important detailed information about the task of the
function module. It should be detailed enough for other users to be able to understand your
function module without having to examine its source code.

To create the documentation:

1. Open the Function Builder and enter the name of the function module that you want to
document.

2. Select Interface.

3. Choose Change.

4. Choose Function module doc.
The system opens the SAPscript editor. Here, you can enter comprehensive function module
documentation, including examples, tips for using the function module, and any other
relevant information.

BC ABAP Workbench Tools SAP AG

Documenting and Releasing a Function Module

442 April 2001

The SAPscript editor differs considerably from the ABAP Editor. Firstly, the menus
and key settings are different. Secondly, you can use special formatting in SAPscript
documentation. For further information about the SAPscript editor, see Text
Processing with the SAPscript Editor [Ext.]

5. Save the documentation

Releasing a Function Module
Releasing a function module is a purely administrative gesture with no effect on the function or its
usability. When you are satisfied that a function module is ready for general use, you can release
it to the system. Releasing a function module signals that a developer has tested it.

Remember too, that when you release a function module, its documentation is
released for translation and appears in the relevant translator's worklist. You should
therefore only release the function module when you are sure that no more changes
will occur. It is a good idea to inform your translator in good time that you are
releasing your documentation.

Normally, only one person is responsible for a function group and only this user can release the
module. Check the attributes for a function group to find out who is responsible for the group.
Then, notify this person that your function module is ready for release. To release a function
module, choose Function module � Release options � Release.

Releasing function modules was designed primarily for developers at SAP. By releasing a
function internally, the SAP developer tells other developers at SAP that they can use this
particular function module safely. SAP developers can also release their functions for customers.
The precise function of an SAP function module may change but SAP ensures that the function
remains backwards compatible.

 SAP AG BC ABAP Workbench Tools

Documenting and Releasing a Function Module

April 2001 443

BC ABAP Workbench Tools SAP AG

Debugger

444 April 2001

Debugger
This documentation describes how to use the Debugger to find errors in the source code of an
ABAP program.

 SAP AG BC ABAP Workbench Tools

Debugger

April 2001 445

Contents
Functional Overview [Ext.]

Starting the Debugger [Ext.]
Display Modes in the Debugger [Ext.]

Changes in Release 4.6 [Ext.]

Breakpoints [Ext.]

Static Breakpoints [Ext.]

Dynamic Breakpoints [Ext.]

Breakpoints at Statements [Ext.]

Breakpoints at Subroutines [Ext.]

Breakpoints at Function Module Calls [Ext.]

Breakpoints at System Exceptions [Ext.]

Saving Breakpoints [Ext.]

Managing Dynamic Breakpoints [Ext.]

Watchpoints [Ext.]

Setting Watchpoints [Ext.]

Specifying a Logical Expression [Ext.]

Changing Watchpoints [Ext.]

Analyzing Source Code [Ext.]

Displaying the Source Code [Ext.]

Stepping Through the Source Code [Ext.]

Processing Fields [Ext.]

Processing Internal Tables [Ext.]

Displaying Attributes [Ext.]

Displaying Objects in ABAP Objects [Ext.]

Other Functions [Ext.]

Displaying Lists [Ext.]

Call Links [Ext.]

Debugging in Production Clients [Ext.]

BC ABAP Workbench Tools SAP AG

Debugger

446 April 2001

Releasing Database Locks [Ext.]

Settings and Warnings [Ext.]

 SAP AG BC ABAP Workbench Tools

Runtime Analysis

April 2001 447

Runtime Analysis
This documentation describes the runtime analysis tool in the ABAP Workbench. Runtime
analysis shows you how long it takes to process ABAP code, from a single statement to a
complete transaction.

To start the runtime analysis, choose Tools � ABAP Workbench, Test � Runtime analysis (or
transaction SE30). . On the initial screen, you can choose one of the four main functions:

� Measurement in the current session

� Measurement in a new session

� Select measurement restrictions

� Analyze performance data

The following documentation explains how to perform an analysis, display and interpret the
results, and use the information to optimize your program.

Contents
Functional Overview [Ext.]
Architecture and Navigation [Ext.]

Starting the Tool: Initial Screen [Ext.]

Measurable Components [Ext.]

Recording Times [Ext.]

Recording Performance Data [Ext.]
Creating Performance Data Files [Ext.]

Analyzing Performance Data Files [Ext.]

Measurement Results [Ext.]

BC ABAP Workbench Tools SAP AG

Runtime Analysis

448 April 2001

Measurement Overview [Ext.]

Statement Hit List [Ext.]

Table Hit List [Ext.]

Group Hit List [Ext.]

Call Hierarchy [Ext.]

Statistics [Ext.]

Measuring External Processes [Ext.]

Starting the Process [Ext.]

Stopping the Process [Ext.]

Measurement Restrictions [Ext.]

Programs or Program Extracts [Ext.]

Statements [Ext.]

Limits on File Size and Time [Ext.]

Aggregation [Ext.]

Other Functions [Ext.]

Display Filter [Ext.]

Managing Performance Files [Ext.]

Saving Performance Files Locally [Ext.]

Tips and Tricks [Ext.]

 SAP AG BC ABAP Workbench Tools

Performance Trace

April 2001 449

Performance Trace
The performance trace tool contains a range of trace functions that you can use to monitor and
analyze the performance of the system in database accesses, locking, and remote calls of
reports and transactions.

Contents
Performance Trace: Overview [Page 451]

Architecture and Navigation [Page 452]

Initial Screen [Page 453]

Recording Performance Data [Page 454]

Starting the Trace [Page 455]

Stopping the Trace [Page 456]

Analyzing Performance Data [Page 457]

Display Filter [Page 458]

Other Filters [Page 460]

Displaying Lists of Trace Records [Page 462]

Analyzing Trace records [Page 466]

SQL Trace Analysis [Page 469]
Embedded SQL [Page 470]
Measured Database Operations [Page 471]
Logical Sequence of Database Operations [Page 472]
Buffering [Page 473]
Analysis of a Sample SQL File [Page 474]
Sample Analysis of an Oracle Statement [Page 477]
Sample Analysis of an Informix Statement [Page 479]

Enqueue Trace Analysis [Page 481]
Enqueue Trace Records [Page 482]
Detailed Display of Enqueue Trace Records [Page 483]

RFC Trace Analysis [Page 484]
RFC Trace Records [Page 485]
Detailed Display of RFC Trace Records [Page 486]

BC ABAP Workbench Tools SAP AG

Performance Trace

450 April 2001

Other Functions [Page 487]

Configuring the Trace File [Page 488]

Saving Lists Locally [Page 490]

The Explain SQL Function [Page 491]

Finding Dictionary Information [Page 493]

 SAP AG BC ABAP Workbench Tools

Performance Trace: Overview

April 2001 451

Performance Trace: Overview
Use
The Performance Trace allows you to record database access, locking activities, and remote
calls of reports and transactions in a trace file and to display the performance log as a list. It also
provides extensive support for analyzing individual trace records.

Integration
The Performance Trace is fully integrated in the ABAP Workbench, and can be called from the
ABAP Workbench initial screen.

Prerequisites
To use the Performance Trace, you need authorization to start Transaction ST05 and the system
authorizations “Change trace switches” (authorization STOM for authorization object
S_ADMI_FCD) and “Analyze traces” (authorization STOR, also for authorization object
S_ADMI_FCD).

Features
From Release 4.0B, the Performance Trace contains the following traces:

1. SQL Trace: This allows you to monitor the database access of reports and transactions.
See also: SQL Trace Analysis [Page 469].

2. Enqueue Trace: This allows you to monitor the locking system.
See also Enqueue Trace Analysis [Page 481].

3. RFC Trace: This provides information about Remote Function Calls between instances.
See also RFC Trace Analysis [Page 484].

Activities
To start the Performance Trace, choose Test � Performance Trace from the initial screen of the
ABAP Workbench (Transaction ST05).

BC ABAP Workbench Tools SAP AG

Architecture and Navigation

452 April 2001

Architecture and Navigation
The following diagram shows the architecture of the Performance Trace. It contains the most
important components and the navigation options:

ST05

Performance Trace
Initial Screen

ABAP Editor

Display Filter

Basic List Extended List

Dict. Info. Explain SQLIdent. SelectsDetail Info.

ABAP
Dictionary

Summary

Navigation
On the initial screen, you can start and stop trace recording. The measurement results are saved
in a trace file.

You can restrict the quantity of performance data displayed by setting a display filter.

You can display the performance data either as a basic list or in an extended list.

It is also possible to make the display more specific:

Use the Dict. Info. display to display information about ABAP Dictionary objects. You can also
branch from this display to the object definition in the ABAP Dictionary. Use the Detail info. option
to display information for the statement you want to analyze. Choose Ident. selects to display a
list of identical select statements. Use the Summary function to summarize the trace list. The
Explain SQL displays an execution plan for a selected SQL statement.

You can branch directly from the performance data for a statement to display the statement itself
in the ABAP Editor.

 SAP AG BC ABAP Workbench Tools

Initial Screen

April 2001 453

Initial Screen
Access
You can start the test tool using Transaction ST05 or by choosing Test � Performance Trace
from the initial screen of the ABAP Workbench.

Functions
The initial screen contains the following functions:

� Trace on (starts recording)

� Trace off (stops recording)

� Trace function selection SQL Trace, Enqueue Trace, or RFC Trace

� Display the basic or extended list

� Start the Explain SQL to analyze an SQL statement or an explicit trace file.

Constraints
The Memory Trace function is not yet available.

BC ABAP Workbench Tools SAP AG

Recording Performance Data

454 April 2001

Recording Performance Data
Preparation
By default and for performance reasons, the Performance Trace in the R/3 System is normally
switched off. When you decide to analyze a report or transaction using the Performance Trace,
you must first establish whether you want to analyze the interaction of reports and transactions,
their effects on one another, the behavior of one or more individual reports and transactions, or
only program sections.

Trace records are written into a Ring file. This means that trace records can be
overwritten. When the file is full, recording continues from the beginning. It is
therefore a good idea to log essential procedures separately. To avoid data being
overwritten, you can also shorten the trace interval or enlarge the ring file.

See also: Configuring the trace File [Page 488]

Essential Information
Before you can record trace records, you must switch on the Performance Trace for an instance
of the R/3 System.

Here, you can determine which trace functions (SQL Trace, Enqueue Trace, RFC Trace) you
want to switch on, and for which user or users they should be activated.

You can then run the reports or transactions that you want to analyze, before switching the trace
off again.

This process generates a trace file, containing all of the trace records, which you can then
analyze, either immediately or later on. If you decide to repeat the trace or analyze the results
later on, remember that the data in the trace file can be overwritten (see above).

See also
Starting the Trace [Page 455]

Stopping the Trace [Page 456]

 SAP AG BC ABAP Workbench Tools

Starting the Trace

April 2001 455

Starting the Trace
Prerequisites
You can only switch on the Performance Trace for a single instance. You should already have
decided the scope of your performance analysis.

Procedure
1. From the ABAP Workbench, choose Test � Performance Trace.

The initial screen of the test tool appears. In the lower part of the screen, the status of the
Performance Trace is displayed. This tells you whether any of the Performance Traces are
switched on, the users for which they are enabled, and the user that switched it on.

2. On the initial screen, select the trace functions that you want to switch on (SQL Trace,
Enqueue Trace, RFC Trace).

3. If you want to switch on the trace under your user name, choose Trace on.
If you want to switch on the trace for another user or user group, choose Trace on for user.
To enter a single user, specify the user name. To enter a user group, specify a search
pattern (you can use the normal wildcards). If you want to change the user or user group,
switch off the performance trace and then restart it, entering the new users or user group.

4. Run the program you want to analyze as normal.

You will normally analyze the performance trace file immediately. In this case, it is a
good idea to use a separate session to start, stop, and analyze the Performance
Trace.

During a Performance Trace interval (the time between switching the Performance
Trace on and off), you can change the trace types at any time. The user (or user
group) must remain unchanged during this period.

Result
The results of the trace recording are contained in a trace file. If trace records are overwritten
during the trace interval, the system displays a message to inform you when you analyze the
trace file.

The Performance Trace records all database access, remote calls, or lock activity.
The measurement itself can affect the performance of the application server on
which the trace is running. You should therefore switch off the trace [Page 456], as
soon as you have finished with it.

BC ABAP Workbench Tools SAP AG

Stopping the Trace

456 April 2001

Stopping the Trace
Prerequisites
You have switched on the Performance Trace and finished running the program that you want to
analyze.

For performance reasons, you should switch of the trace as soon as you have
finished recording.

Procedure
1. From the ABAP Workbench, choose Test � Performance Trace.

The initial screen of the test tool appears. It contains a status line displaying the traces that
are active, the users for whom they are active, and the user who activated them.

2. Select the trace functions that you want to switch off.

3. Choose Trace off.
If you switched on the trace recording yourself, you can now switch it off immediately. If
another user switched it on, a confirmation prompt appears.

Result
The results of the trace recording are stored in a trace file, which you can now analyze. For
further information, refer to Analyzing Performance Data [Page 457].

 SAP AG BC ABAP Workbench Tools

Analyzing Performance Data

April 2001 457

Analyzing Performance Data
Prerequisites
Once you have switched off the performance trace, you can analyze the data. The data is
available until its trace records are overwritten in the trace file. You can ensure that the file is not
overwritten by changing the name of the trace file (see Configuring the Trace File [Page 488]) or
saving the trace file at operating system level (see Saving Lists Locally [Page 490]).

Procedure: Overview
You must switch off the Performance Trace before analyzing the trace file. For further
information, refer to Stopping the Trace [Page 456].

Before displaying the trace records, you can use a display filter to specify the records and
information that you want to look at. For further information, refer to Display Filter [Page 458].

When you display the trace records, you can choose between a basic list and an extended list.
Both lists display an overview of the logged actions and performance data. For further
information, refer to Displaying Lists of Trace Records [Page 462].

Both lists contain the same range of functions for analyzing the statements and other
performance data listed. For further information, refer to Analyzing Performance Data [Page 457].

Other analysis options depend on the trace types that you are using.

See also:
SQL-Trace [Page 469]

Enqueue-Trace [Page 481]

RFC-Trace [Page 484]

BC ABAP Workbench Tools SAP AG

Display Filter

458 April 2001

Display Filter
Prerequisites
You have switched off the performance trace and have opened the display filter by choosing List
trace from the initial screen of the Performance Trace.

Use
You can use the display filter (“Filter trace list”) to restrict the number of logged trace records that
are displayed on the basic list or extended list.

Features

If you do not enter any selections, all of the trace records are selected.

 SAP AG BC ABAP Workbench Tools

Display Filter

April 2001 459

Enter the Name of the Trace File
The system initializes this parameter from the system environment. The current trace file is
proposed by default. However, you can also specify a different filename. For further information,
refer to Configuring the Trace File [Page 488].

Specifying the Trace Type to Display
This parameter is also initialized from the system environment. The default trace type is SQL
Trace. If you start the display filter directly after the recording, the trace type appears as it was
last configured.

Specifying the Trace Interval
The default trace interval is from 00:00:00 to the current system time on today’s date. However, if
you start the display filter directly after the recording, the trace interval is set from the starting
time to the ending time of the recording.

Note that if you are working on a distributed system where the clocks on the
database server and the application servers are not synchronized, any times
determined automatically by the system may be inaccurate, which in turn may mean
that not all trace records are displayed.

Enter Further Selections
For further information, refer to Other Filters [Page 460].

Options
Place the cursor on a parameter and choose Options to change the default option and choose a
new operator.

Del. Selection
To delete the selection criteria for a parameter, choose Del. selection. See also Other Selection
Options [Page 460]).

Refresh
To update the display filter screen, choose Refresh (or press ENTER).

Initialize the Filter Parameters
If you repeat the Performance Trace during an R/3 terminal session, the default filter parameters
are set to your last selections. Use the Initial filter trace list function (right mouse button and
choose from popup menu) to restore the original defaults.

Specify the List Type
Select either Basic list or Extended list and choose Show to display the corresponding list.

See also Displaying Lists of Trace Records [Page 462].

BC ABAP Workbench Tools SAP AG

Other Filters

460 April 2001

Other Filters
There is a range of further display options that you can set:

� User name

� Object name

– SQL Trace: Name of the table in the SQL statement

– Enqueue Trace: Name of the lock object

– RFC Trace: Instance on which the function is called

� Duration

� Operation

– SQL Trace: Database operation

– Enqueue Trace: Lock object operation

– RFC Trace: Execution type (client/server)

The following defaults are already set:

- For Username: The current user

- For Objectname: System tables (D010*, D020*, DDLOG) are not displayed.

The Duration and Operation parameters are not initialized.

You can specify a numeric value for the Duration. This is measured in microseconds. For all
other parameters, you can enter a pattern or name. You can use the wildcard characters ‘*’ and
'+’ in patterns.

You can also change the operator in a specification. To do this, position the cursor on the
corresponding parameter and choose Options. A dialog box then appears in which you can
specify whether records satisfying the condition should be included (green stoplight) or excluded
(red stoplight) from the selection.

If you want to enter more than one value, name or pattern for a parameter, use the Multiple
selection option (“=>” icon on the right of the screen).

Example: You might want to restrict the duration to a particular interval:

 SAP AG BC ABAP Workbench Tools

Other Filters

April 2001 461

BC ABAP Workbench Tools SAP AG

Displaying Lists of Trace Records

462 April 2001

Displaying Lists of Trace Records
Prerequisites
You must have switched off the Performance Trace, set the display parameters in the display
filter [Page 458] and displayed the basic or extended list.

Lists
You can display trace records in either a basic list or an extended list. The extended list contains
everything from the basic list, along with three extra display columns. There is a range of analysis
functions that you can use both on the basic list and on the extended list. The functions are the
same in both lists. You can switch between the two list displays using a pushbutton in the
application toolbar.

 SAP AG BC ABAP Workbench Tools

 Displaying Lists of Trace Records

April 2001 463

Basic List

The first line of the list contains a header containing the following information:

- Name of the transaction, process identification number, process type, client, and user name.

The next line contains the following headers:

• Duration Runtime for the statement in the form milliseconds.microseconds.

• Object
– SQL trace record: Name of the database table

– Enqueue trace record: Name of the lock object

– RFC trace record: Shortened name of the instance on which the function module was
executed

• Oper
– SQL trace record: Name of the operation performed in the database. See also

Measured Database Operations [Page 471]

– Enqueue trace record: Name of the lock operation

– RFC trace record: Client | Server (client means that a remote function was called, server
means that the function was made available and executed)

• Rec Number of records

– SQL Trace: Number of records retrieved or processed and passed between the R/3
System and the database.

– Enqueue trace: Number of granules

– RFC Trace: Not used

• RC Return code of the statement

BC ABAP Workbench Tools SAP AG

Displaying Lists of Trace Records

464 April 2001

• Statement Short form of the logged statement

− Depends on the trace form.

The runtime (duration) is highlighted in the list if it exceeds a given threshold value
(100000 microseconds). This is declared in the type group “SQLT” as the constant
“SQLT_DURATION_NEG”. You can change this value if you want to use a different
threshold.

Note that the duration can only be as precise as clock of your hardware platform. If
the execution time of the statement is less than the smallest unit of time supported
by the hardware clock, the duration will be zero.

Extended List
The extended list (Extended list pushbutton) contains three extra display columns:

• hh:mm:ss.ms The time at which the record was executed (in the form hours: minutes:
seconds: milliseconds).

• Program Name of the program that executed the logged statement.

• Curs
– SQL trace record: Number of the cursor (link to cursor cache) used to find the database

entries.

– Enqueue and RFC trace records: Not used.

 SAP AG BC ABAP Workbench Tools

Displaying Lists of Trace Records

April 2001 465

Other Functions
Analyzing the Trace Records
� Sort list

� Display formatted logged statements

� Definition of the corresponding ABAP Dictionary object for SQL and Enqueue trace

� Display the logged statement “in situ” in the program code

� Display the access plan for a logged SQL statement

� List identical select statements in the trace list

� Summarize the trace list

� Switch between the two lists

For further information, refer to Analyzing Trace Records [Page 466]

Different Trace Types
The system displays different trace types in different colors.

Standard Functions
A range of standard R/3 list functions is also available to help you navigate and search in the list
or save the list to an operating system file.

See also Saving Lists Locally [Page 490].

BC ABAP Workbench Tools SAP AG

Analyzing Trace Records

466 April 2001

Analyzing Trace Records
Prerequisites
You have displayed the trace records that you want to analyze in a basic or extended list.

Functions
Sorting the Lists
You can sort the list by any of the parameters in the list heading, that is, transaction name,
process identification number, process type, client, and user name. To sort the list, position the
cursor on the relevant column and choose Sort.

Switching Between Lists
To switch from the basic list to the extended list, choose Extended list. To return from the
extended list to the basic list, choose Back.

Detailed Display and Replacing Placeholders
When the logged statement is formatted, you can specify whether to replace the placeholders in
the statement by the current variables or leave them in the statement and list the variables
separately. If there are no variables, the two display forms are identical. To display the statement,
double-click its short form, or position the cursor on it and click the magnifying glass icon.

To replace the placeholders with the current variables, choose Var. replace.

Displaying Information about ABAP Dictionary Objects
To display ABAP Dictionary information for an object (table or lock object), position the cursor on
the object and choose DDIC info. If the current statement contains more than one ABAP

 SAP AG BC ABAP Workbench Tools

Analyzing Trace Records

April 2001 467

Dictionary object (for example, a join), the Object column contains the first object to appear in
the statement.

If the log entry is an RFC entry, the column contains a shortened version of the name of the
instance on which the function module was executed. In this case, you cannot display a ABAP
Dictionary definition.

You can display further ABAP Dictionary information by opening the actual definition of the object
within the ABAP Dictionary. For further information, see Finding Dictionary Information [Page
493].

Execution Plan for SQL Statements
To display the execution plan of a selected SQL statement, place the cursor on the statement
and choose Explain SQL. The SQL statements for which an execution plan can be displayed
depends on the database system that you are using. The execution plan for a SELECT
statement under Oracle looks like this:

BC ABAP Workbench Tools SAP AG

Analyzing Trace Records

468 April 2001

Displaying the Source Code
To switch to the source code containing the current statement in the log, position the cursor on
the short form display of the statement and choose ABAP Display.

Note that the source code cannot always be displayed. For example, if the call
comes from the R/3 kernel, you cannot branch to the program code.

Identical Selects
When you are analyzing a trace log, it can be particularly useful to find out if there are any
identical select statements. You can do this by choosing Identical selects. The system compiles a
list of any SQL statements that are executed more than once. You can then eliminate any SQL
statements that are not required.

Summarizing the Trace List
You can summarize the select statements by choosing Summary. This leaves you with an
overview of the total runtime and the total number of records retrieved.

 SAP AG BC ABAP Workbench Tools

SQL Trace Analysis

April 2001 469

SQL Trace Analysis
The SQL Trace part of the Performance Trace tool allows you to see how the OPEN SQL
statements that you use in ABAP programs are converted to standard SQL statements (see
Embedded SQL [Page 470]) and the parameters with which the embedded SQL statements are
passed to the database system.

Overview
While the trace is switched on, the SQL Trace function records all database activity by a
particular user or group of users. The R/3 System takes OPEN SQL statements and converts
them in to embedded SQL statements that it passes to the database. It is the embedded SQL
statements, their parameters, return codes, and the number of entries retrieved, inserted, or
deleted that are recorded in the SQL Trace file. The log file also contains the runtime of the
statement and the place in the application program from which it was called.

The SQL trace tells you:

� The SQL statements executed by your program.

� The values that the system uses for particular database access and changes.

� How the system converts ABAP Open SQL statements (such as SELECT) into Standard
SQL statements.

� Where your application executes COMMITs.

� Where your application repeats the same database access.

� The database accesses and changes that occur in the update part of your application.

BC ABAP Workbench Tools SAP AG

Embedded SQL

470 April 2001

Embedded SQL
One of the difficulties of connecting a programming language with an SQL interface is the
transfer of retrieved data records. When the system processes an SQL statement, it does not
know how big the result will be until it has made the selection. The result consists of table entries,
which all have the same structure. The system has to transfer these records to the calling
program in the form of a data structure, for example an array, that is known to the calling
program.

The disadvantage of an array is its static definition. You have to specify the size of an array
before runtime. However, because you cannot know the size of the dataset the system will
return, you must define a very large array to avoid an overflow.

To circumvent this problem, the R/3 Basis System translates ABAP Open SQL statements into
Embedded SQL. In Embedded SQL, the system defines a cursor that is used to regulate the
data transfer between ABAP programs and a database. See also Database Operations [Page
471].

During every FETCH operation, the database passes one or more data records to the R/3
database interface.

 SAP AG BC ABAP Workbench Tools

Measured Database Operations

April 2001 471

Measured Database Operations
Each SQL statement is broken down into database operations by the R/3 System. The SQL
Trace allows you to measure the runtime of each of these operations:

DECLARE Defines a new cursor within an SAP work process and assigns the SQL
statement to it. The short form of the statement is displayed in the list of trace
records. The cursor has a unique cursor ID, which is used in communication
between the R/3 System and the database system.

PREPARE Converts the SQL statement and determines the execution plan.

OPEN Opens a cursor for a prepared (converted) SELECT statement. OPEN passes
the parameters for the database access. It is only used with SELECT
statements.

FETCH Passes one or more records selected in the SELECT statement to the
database interface of the R/3 System. The data records are identified by the
cursor ID.

REOPEN Reopens a cursor prepared by the system for a previous SELECT statement
and passes a new set of parameters to the database.

EXEC Passes the parameters for the database statement, and executes the
statements that change data in the database (such as UPDATE, DELETE, or
INSERT).

REEXEC Reopens a cursor prepared by the system for a previous EXEC statement.

For information about the sequence in which these operations occur, refer to Logical Sequence
of Database Operations [Page 472].

BC ABAP Workbench Tools SAP AG

Logical Sequence of Database Operations

472 April 2001

Logical Sequence of Database Operations
The database operations are all related, and always occur in the same logical order:

The DECLARE function defines a cursor and assigns a number to it. DECLARE is followed by
PREPARE.

PREPARE takes an SQL statement, for example:

 select * from sflight where carrid eq 'LH'.

It determines the access method, and prepares the statement to be passed to the database. At
this stage, the system is only concerned with the structure of the SQL statement, and not the
values that it contains.

The OPEN function takes the prepared SQL statement and adds the relevant values to it. In the
above example, OPEN would give the value LH for the field carrid.

FETCH passes the entries from the database to the database interface of the R/3 System. All of
the database operations required to execute an SQL statement are linked by the same cursor ID.

If the SQL statement makes changes in the database (INSERT, UPDATE, DELETE), PREPARE
is followed by EXEC, which executes the statement.

If the system can refer back to an SQL statement that has already been prepared, there is no
PREPARE operation, and the statement is executed using REOPEN or REEXEC as appropriate.

 SAP AG BC ABAP Workbench Tools

Buffering

April 2001 473

Buffering
The system ensures that data transfer between the R/3 System and the database system is as
efficient as possible. To do this, it uses the following techniques:

� Table buffering: The program accesses data from the buffer of the application server.

� Database request buffering: Individual database entries are not read or passed to the
database until required by an OPEN SQL statement.

When you analyze trace records, you should also examine the system's buffering mechanisms.

Table Buffering
Tables can be either partially or fully buffered (refer to Buffering Database Tables [Ext.]). This
means that an OPEN SQL statement only accesses the database if the results of the statement
are not already in the buffer. Consequently, the SQL Trace does not contain a command or
command sequence for every OPEN SQL statement. On the other hand, every SQL statement in
the trace file has been sent to the database and executed.

Database Request Buffering
To minimize the number of time-consuming PREPARE operations, each work process on the
application server has a buffer of SQL statements that it has already prepared. The default buffer
size is 250 statements.

Whenever an OPEN SQL statement appears in a program, the work process checks whether it
already exists in the “statement cache”. If it does, the statement is executed immediately; that is,
there is no further PREPARE operation, and the statement is executed using a REOPEN (for
SELECT) or a REEXEC (for INSERT, UPDATE, or DELETE).

If the statement does not exist in the buffer, it must be prepared for the subsequent OPEN or
EXEC operation. The buffer administration uses a LRU (least recently used) algorithm to delete
those statements, whenever necessary, that are only seldom used. Frequently-used statements
normally only need to be prepared once.

Application servers buffer DECLARE, PREPARE, OPEN, and EXEC statements in the cursor
cache of their work processes. Once the system has opened a cursor for a DECLARE statement,
it can carry on reusing it in the same work process.

BC ABAP Workbench Tools SAP AG

Analyzing a Sample SQL Data File

474 April 2001

Analyzing a Sample SQL Data File
When you create an SQL trace file for an application, you can see exactly how the system
handles database requests. In a sample application, a report reads and later changes records on
the ABAP Dictionary table SFLIGHT using ABAP Open SQL statements. Since the table SBOOK
is not buffered, the system first needs to access the database to retrieve the records. In the
sections below, the data file from the sample application is examined.

Read Access
The first screen of the SQL Trace data file displays each measured database request the
application made. The trace file records when the request occurred and its duration. The ABAP
Dictionary table involved in the request is also listed.

A trace file for a read access of the table SFLIGHT might look like this:

The system measured several database operations involved in retrieving records from SFLIGHT:

Operation Function

 SAP AG BC ABAP Workbench Tools

Analyzing a Sample SQL Data File

April 2001 475

PREPARE Prepares the OPEN statement for use and determines the data access method.
Since an active cursor with the number 18 is available in the work process's
cursor cache, the system does not perform a DECLARE operation. However, the
system must prepare the SELECT statement that is used to read the table
SFLIGHT.

The system does not issue the field 'MANDT' and 'CARRID' in the SELECT
statement a value at this point but instead gives it a database-specific marker.

OPEN Opens the cursor and specifies the selection result by filling the selection fields
with concrete values. In the case of this example, the field 'MANDT' receives the
value '000' and the field 'CARRID' receives the value 'LH'. The OPEN operation
then creates a set of retrieved records in the database.

FETCH Moves the cursor through the dataset created by the OPEN operation. The array
size displayed beside the fetch data means that the system can transfer a
maximum package size of 392 records at one time into the buffered area. The
system allocates this space on the application server for the SFLIGHT table.

In the above example, the first FETCH retrieves the maximum number of records
from the dataset. Then, the FETCH transfers these records to the program
interface.

Write Access
An example SQL data file analyzing a request that changes data in the Table D010SINF might
look like this:

BC ABAP Workbench Tools SAP AG

Analyzing a Sample SQL Data File

476 April 2001

The example shows the system inserting new records into the table (INSERT). As in the first
example, where the system carried out a read-only access, the system needs to prepare the
database operations (PREPARE) that change the database records. The PREPARE precedes
the other operations.

 SAP AG BC ABAP Workbench Tools

Example Explanation of an Oracle Statement

April 2001 477

Example Explanation of an Oracle Statement
You can use the SQL Trace facility to view explanations of specific Oracle statements. From
within a trace file display, you use the Explain SQL function to display more information about a
specific database request. The Explain function is available only for PREPARE and REOPEN
operations. To explain a request:

1. Place the cursor on a line containing the database request you want explained.

2. Choose Explain..

The Explain screen shows you the database's strategy for carrying out the selected
operation.

For example, if you are working with an ORACLE database, you can show the explanation for the
following statement:
select * from fllog where flcode = '00000123'.

The system provides the following explanation:

Operation Options: Object Name ID PAID POS

SELECT STATEMENT 0

TABLE ACCESS BY ROWID FLLOG 1 0 1

INDEX UNIQUE SCAN FLLOG___0 2 1 1

QUERY PLAN

SELECT STATEMENT

TABLE ACCESS BY ROWID FLLOG

INDEX UNIQUE SCAN FLLOG___0(UNIQUE)

The fields in the explanation have the following meanings:

OPERATION Identifies the operation name.

OPTIONS Operation attributes.

OBJECT NAME Identifies the object involved in the operation.

ID Specifies the operation's ID number.

PAID Specifies the ID number that the current operation transfers its results to.
This is important if nested accesses on various hierarchy levels are
involved.

Position Identifies the next number for operations working on the same hierarchy
level.

In the example above, the key is fully qualified. The database can use the primary key index
FLLOG__0 to access the table records. Every transparent table in the ABAP Dictionary has a
primary key. The system automatically creates an index for this key. The primary key index is

BC ABAP Workbench Tools SAP AG

Example Explanation of an Oracle Statement

478 April 2001

also unique, meaning that there is only one index entry for every line in the table. As a result, the
system uses the UNIQUE SCAN operation.

The UNIQUE SCAN has the ID 2 and parent ID 1. This means that the operation passes its
results to the operation with ID 1. ID 1 belongs to the TABLE ACCESS operation. TABLE
ACCESS can directly access one record because of the uniqueness of the BY ROWID index.
Once the system chooses an access strategy, it sends the SELECT statement with ID 0 to the
database.

If the SELECT statement does not specify a fully qualified key, the database could be forced to
read the records using a FULL TABLE SCAN. In this case, no index is available and the
database reads the entire table in packages.

If the index is ambiguous, the database uses a RANGE SCAN. The RANGE SCAN scans over
an index area that might contain several sets of retrieved data.

The NESTED LOOP operation exists for nested reads where several indexes are joined together
within one database access.

 SAP AG BC ABAP Workbench Tools

Example Explanation of an Informix Statement

April 2001 479

Example Explanation of an Informix Statement
You can use the SQL Trace facility to view explanations of specific Informix statements. From
within a trace file display, you use the Explain SQL function to display more information about a
specific database request. The Explain function is available only for PREPARE and REOPEN
operations. To analyze a statement:

1. Place the cursor on a line containing the database request you want explained.

2. Choose Explain..

The Explain screen shows you the database's strategy for carrying out the selected
operation.

If you are working with an Informix database and you display the explanation for the following
statement:
select owner from systables where tabname = 'atab'

The system provides the following explanation:
Execution plan of a select statement (Online Optimizer)

QUERY:

SELECT OWNER

FROM SYSTABLES

WHERE TABNAME = ‘ ATAB’

Estimated Cost: 1

Estimated # of Rows Returned: 1

1) informix.systables: INDEX PATH

(1) Index Keys: tabname owner (Key-Only)

 Lower Index Filter: informix.systables.tabname = ‘ ATAB’

The fields in the explanation have the following meanings:

QUERY Identifies the SQL statement that was traced.

Estimated Cost Estimates the database expenditure required to execute the
statement. The cost-based optimizer estimates this value in terms
of the I/O and CPU required by the statement. The larger the
Estimated Cost the greater the expenditure.

Estimated # of Rows
Returned:

Estimates the number of table rows that the SQL statement will
return.

Immediately below the number of rows returned is the selected execution plan. In the above
example, the execution plan is as follows:
1) informix.systables: INDEX PATH

The 1) indicates that the system processes the systables table as the first step of the
execution plan. For queries that span several tables (views and joins), the numbering sequence
indicates the order the system processes the tables. In this example, only a single step was
needed.

BC ABAP Workbench Tools SAP AG

Example Explanation of an Informix Statement

480 April 2001

The execution plan specifies the type of table access. In the above example, the access was the
INDEX PATH. Access to the required data row is made using the index of the systables table.
Normally, the execution plan uses the primary key as an index. Every transparent table in the
ABAP Dictionary has a primary key and the system automatically creates an index for this key.

When the system must read a large proportion of a table, the system does not use
the primary key as an index.

For this example, the system did not need to read the row that corresponds to the index key. The
information that was required was present in the key itself. The explanation indicates this using
the phrase Key-Only as follows:

(1) Index Keys: tabname owner (Key-Only)

If a SELECT statement is specified without a fully-qualified key, the database may need to read
the relevant rows with a FULL TABLE SCAN. In this case, you will not see an index in the SQL-
Explain output but instead you will see something like the following:
1) informix.systables: SEQUENTIAL SCAN

This indicates that a read of the entire table is necessary (FULL TABLE SCAN).

With more complex operations, where the combination of results from several SELECTS on
different tables is required, you will see further strategies mentioned (such as MERGE JOIN,
DYNAMIC HASH JOIN). These refer to the join strategy chosen by the optimizer.

Ensuring Up-to-Date Information
The optimizer can compute an accurate value for each explanation field only if the statistical
information for each table is up to date. To enable the optimizer to compute accurate values for
the above fields, you must ensure that up-to-date statistical information about the contents of
relevant tables is available.

To update your information, use the Update Statistics function. Since the execution plan selected
by the optimizer (for example, the use of a table scan versus an index) depends crucially on this
information, you should always ensure that it is kept as up to date as possible by regularly
running Update Statistics.

 SAP AG BC ABAP Workbench Tools

Enqueue Trace Analysis

April 2001 481

Enqueue Trace Analysis
Use
The Enqueue Trace allows you to track the locking and unlocking statements that your
application or the R/3 System uses, and the locking objects and parameters to which they apply.
You can display the records logged in the trace file for further analysis.

Features
While the Enqueue Trace is switched on, the system records all of the locking and unlocking
statements that occur for a user or group of users.

The trace recording contains the following information:

� The locking statements executed

� The table names in the lock object

� The name of the program that set the lock

� The lock type

� The lock owner

� The time required to set the lock

� The time required by the enqueue server to release the lock

See also:

Enqueue Trace Records [Page 482]

Detailed Display of Enqueue Trace Records [Page 483]

BC ABAP Workbench Tools SAP AG

Enqueue Trace Records

482 April 2001

Enqueue Trace Records
The following list columns are particularly relevant to enqueue trace records:

In the Basic List
� Duration Runtime for the lock operation in the form milliseconds.microseconds.

� Object The name of the lock object.

� Oper The lock operation. For further information, refer to Lock Objects [Ext.].

� RC Return code.
If the value in this column is zero, the enqueue operation was successful. If it is "1", the
operation was unsuccessful because the lock object or parts of it were already locked.

� Rec Number of granules in the lock object.

� Statement This column lists the granules for the lock request. If there is more than one,
they are separated by the "|" character. The lock mode, lock table, and lock argument of
each granule are listed.
See also: Lock objects [Ext.].

In the Extended List
� hh:mm:ss.ms The time at which the lock operation was performed, in the form hours :

minutes : seconds. milliseconds.

� Program Name of the ABAP program that requested the lock operation.

� Curs not used.

For a more detailed analysis, use the Detailed Display of Enqueue Trace Records [Page 483].

 SAP AG BC ABAP Workbench Tools

Detailed Display of Enqueue Trace Records

April 2001 483

Detailed Display of Enqueue Trace Records
To display an enqueue trace record in more detail, choose the magnifying glass icon on the basic
list or extended list.

The detailed display contains the following information:

� First line:
– Operation of the enqueue statement

– Name of the lock object

� Owner Lock owner.

� Owner_UPT Owner of the lock in the logical processing unit.

� Scope-Parameter Indicates who owns the lock.

� Collision Owner If this field is filled, the user whose name appears is the owner of the lock
that was requested.

� Collision Object The lock object that already possesses the lock requested (or parts of it).

� Collision Username The user name of the lock owner.

� Remote Time Total time in milliseconds required for the lock (in client). This is made up of
the request time and the time required for the communication. If the request is local, the local
execution time is entered.

� Request Time Time required by the enqueue server to execute the lock (server time, in
milliseconds). If the). In the case of an asynchronous call, or no server being requested, the
time is zero.

� ABAP-Programname Name of the ABAP program that requested the lock.

� Number Number of granules.

� Lock-Mode Type of lock.

� Tablename Table name of the lock object.

� Granularity Argument Lock argument.

BC ABAP Workbench Tools SAP AG

RFC Trace Analysis

484 April 2001

RFC Trace Analysis
Use
You can use RFC Trace to monitor the remote calls that your application or the R/3 System
makes, and the instances on which they are executed. The RFC Trace generates a trace file of
logged trace records that you can display and analyze further.

Features
While the RFC Trace is switched on, the system records all Remote Function Calls made by a
particular user or group of users.

The trace recording tells you:

� Which function modules have been called "remotely" from the program that you analyzed.

� Whether the RFC was successfully executed.

� The total runtime required for the remote call.

� Whether the RFC communication was as a RFC client or an RFC server.

� The instance on which the remote call was executed.

� The technical parameters of the remote instance.

� The number of bytes sent and received in the Remote Function Call

See also:
RFC Trace Records [Page 485]

Detailed Display of RFC Trace Records [Page 486]

 SAP AG BC ABAP Workbench Tools

RFC Trace Records

April 2001 485

RFC Trace Records
The following columns of an RFC trace record are particularly significant:

In the Basic List
� Duration Execution time for the Remote Function Call in the form

milliseconds.microseconds.

� Object Shortened name of the instance (system) in which the remotely-called function
module was executed.

� Oper ID of the cross-instance RFC communication. The RFC Client is the instance that
calls the function module remotely. The server is the instance that makes the function
available and executes it.

� Rec Not used.

� RC Return code of the logged remote call. If the return code is zero, the remote call was
successful. If the value is not equal to zero, an error occurred.

� Statement This column contains the name of the local instance, the name of the remote
instance, the name of the function module called, and the number of bytes sent and received.

In the Extended List
� hh:mm:ss.ms The time at which the remote call was executed, in the form hours: minutes:

seconds: milliseconds.

� Program Name of the ABAP program that triggered the Remote Function Call.

� Curs Not used.

For further details, refer to Detailed Display of RFC Trace Records [Page 486].

BC ABAP Workbench Tools SAP AG

Detailed Display for RFC Trace Records

486 April 2001

Detailed Display for RFC Trace Records
To display detailed information about an RFC trace record, choose the magnifying glass icon on
the basic or extended list.

The detailed display contains the following information:

� Name of the function module that was called.

� Local IP-Address IP address of the local host on which the RFC trace was generated.

� Local computername Name of the local host.

� Remote IP-Address IP address of the remote host on which the function module was
executed.

� Remote computername Name of the remote host.

� Client/Server Classification of the RFC communication as RFC client or RFC server.

� ABAP-Program Name of the ABAP program that triggered the remote call. If there is no
name explicitly specified ("space"), the call came from the kernel of the R/3 System.

� RFC-Time Total runtime of the Remote Function Call.

� RFC-Time Total time required to execute the remote call.

� Bytes send Number of bytes sent to the remote system.

� Bytes receive Number of bytes received from the remote system.

 SAP AG BC ABAP Workbench Tools

Other Funtions

April 2001 487

Other Funtions

Configuring the Trace File [Page 488]

Saving Lists Locally [Page 490]

The "Explain SQL" Function [Page 491]

Finding Dictionary Information [Page 493]

BC ABAP Workbench Tools SAP AG

Configuring the Trace File

488 April 2001

Configuring the Trace File
Profile Parameters
The system requires the two following profile parameters to be set in order for the performance
trace to work:

� rstr/file: The pattern for the path name of the trace file.

� rstr/max_diskspace: The maximum size (in bytes) that can be assigned to a trace file.

The recommended default size is 16 384 000 (16 000 KB). However, you can
change the name of the trace file at any time using Transaction ST01. This allows
you to work with several trace files at once and prevent performance data from being
overwritten.

� rstr/fileset/allowed: This parameter determines whether users should be allowed to
change the name of the trace file. The default value is "1", that is, it is possible to change the
name of the file. If you change the value to "0", users cannot change the name of the file.

These parameters are set when the system is installed. You can also change them using
Transaction RZ11.

Changing the Name of the Trace File
The name of the trace file into which the performance trace writes entries is predetermined by the
system administrator. If the profile parameter rstr/fileset/allowed is set to its default value, you
can change the name of the trace file in the profile parameter rstr/file using Transaction ST01.

Procedure

1. Start Transaction ST01, either using its transaction code, or by choosing Administration �
System administration � Monitor � Trace � SAP System trace.

2. Choose Edit � New file.
A dialog box appears in which you can choose any character for the third-last character (as
long as the profile parameter rstr/fileset/allowed is set to "1").

3. Enter a character.
You can enter any character from 0 through 9 and A through Z.

 SAP AG BC ABAP Workbench Tools

Configuring the Trace File

April 2001 489

BC ABAP Workbench Tools SAP AG

Saving Lists Locally

490 April 2001

Saving Lists Locally
The results of the trace recording are written in a trace file, which you can display in the form of a
basic or an extended list. You can save these lists in local files on your frontend. This allows you
to keep performance data that would otherwise eventually be overwritten.

Procedure
1. Start the initial screen [Page 453] of the performance trace.

2. Choose List Trace.
The display filter [Page 458] appears.

3. In the display filter, set the range of trace records that you want to display.

4. Choose Show.
The basic list or extended list appears, according to your choice.

5. Choose Trace � Save to PC file…
The Save List in File dialog box appears.

6. Select the format in which you want to save the data and choose Continue.

7. In the following dialog box, enter the name of the local file.

8. Choose Transfer.

Result
The trace records from the list have now been saved in a file on your frontend that you can
display in the format you specified during the above procedure.

If you choose Unconverted in step 6, you can also download the list to the clipboard.

 SAP AG BC ABAP Workbench Tools

The Explain SQL Function

April 2001 491

The Explain SQL Function
The Explain SQL function allows you to analyze the database strategy used to access any given
table or view defined in the ABAP Dictionary or in the database itself. With it, you can see the
indexes that the system uses.

There are two ways of analyzing an SQL statement:

� From the initial screen of the Performance Trace, you can check a statement without
generating a trace file.

� From the list display of a trace file, you can select an ABAP Dictionary table and display
details of the access methods that it uses.
See also Analyzing Trace Records [Page 466].

Note that the result of the Explain SQL function (both the SQL statement and the
operation) is database-specific. There are certain database systems under which
you can only use the Explain SQL function for the SELECT statement.

To be able to interpret the results of the Explain SQL function, you will need a sound
knowledge of the relevant database system. For further information, refer to the
documentation of the database manufacturer.

Analyzing an SQL Statement Without a Trace File
1. On the initial screen of the Performance Trace, choose Explain one SQL statement (for

Oracle), or Explain one SQL request (for Informix).
The system displays a screen containing an input field. Enter the name of the table (or view)
that you want to use.

2. Enter an SQL statement.
Make sure that you enter the name in uppercase.

3. Choose Save.

The system analyzes the statement and displays information about the access strategy
of the database.

BC ABAP Workbench Tools SAP AG

The Explain SQL Function

492 April 2001

 SAP AG BC ABAP Workbench Tools

Finding Dictionary Information

April 2001 493

Finding Dictionary Information
From the list of trace records, you can display further information about ABAP Dictionary objects,
and also branch to the definition of the object in the ABAP Dictionary.

Prerequisites
The trace records of the trace file must not have been overwritten.

Procedure
1. Start the initial screen [Page 453] of the Performance Trace.

2. Choose List Trace.
The display filter [Page 458] appears.

3. Define the range of trace records that you want to display.

4. Choose Show.
The trace file appears in a basic list or an enhanced list, according to your selection.

5. Position the cursor on the line containing the ABAP Dictionary table that you want to analyze.

6. Choose DDIC-Info.
The first part of the ABAP Dictionary information screen displays the administrative data for
the chosen tables, such as its class, amount of memory required, and so on.
The second part of the screen contains information about the indexes that exist for the table.
ABAP Dictionary tables always have at least one index, which is drawn from the primary key
of the table. You can also create further indexes in the ABAP Dictionary, which are also listed
here.

7. Choose Table/View fields.
This function branches from the trace list to the table definition in the ABAP Dictionary.

BC ABAP Workbench Tools SAP AG

Information About Development Objects

494 April 2001

Information About Development Objects
The ABAP Workbench contains a comprehensive information system. This documentation
contains the following sections:

The Repository Information System [Page 496]
Environment Analysis [Page 498]
Determining the Environment [Page 499]

Where-used Lists [Page 500]

The Application Hierarchy [Page 502]

The Data Browser [Page 504]
Customizing the Data Browser Display [Page 506]

Other Data Browser Functions [Page 507]

 SAP AG BC ABAP Workbench Tools

Navigation and Information System: Overview

April 2001 495

Navigation and Information System: Overview
The ABAP Workbench provides the following tools for navigating among development objects:
The Repository Browser, the R/3 Repository Information System, and the application hierarchy.
All three navigation tools use a "file manager" type interface for displaying development objects.
The Workbench also contains the Data Browser for displaying the contents of database tables.

The Repository Browser is the central tool for organizing and managing your personal
development objects. The Repository Browser is the most commonly-used tool in day-to-day
development.

The R/3 Repository contains all of the development objects in the system. From the Repository
Information System you can search for Dictionary objects, program objects, function groups, and
so on. You can use the Repository to:

� generate lists of programs, tables, fields, data elements, and domains.

� find where tables and fields are used in screens and ABAP programs.

� display foreign key relationships and so on

The Application Hierarchy depicts the organization of all the applications in your R/3 system. The
application hierarchy is an organizational tool. Each company defines its own hierarchy explicitly.
You can use this tool to view the development objects used by each application in your company.
You can also use the application hierarchy to plan an application before you develop it.

The Data Browser is a tool for retrieving information about a table without using an ABAP
program. You can browse the contents of a table and branch from a specific entry to its related
check table entries. If the table attributes allow it, you can also create or update table records
with the Data Browser.

The Right Tool at the Right Time
From each of the Workbench information and navigation tools, you can reach not only any of the
objects in your system but any of the Workbench tools. For example, if you navigate to a table
object, the system starts the Dictionary tool and displays the table within it. If you branch to a
program object, the system starts the ABAP Editor and displays the program within the Editor.

BC ABAP Workbench Tools SAP AG

The Repository Information System

496 April 2001

The Repository Information System
You use the Repository Information System to search for objects in the R/3 System. To access
the R/3 Repository Information System from the ABAP Workbench, choose Overview �
Repository Infosys.

The initial screen of the Repository Information System displays a hierarchical list of all the
different types of objects in your R/3 System.

The object categories in the R/3 System are modeling objects, ABAP Dictionary objects,
programming objects, and environment objects.

The Selecting Objects in Lists [Page 23] section describes in
more detail how to work with the lists in the Repository Information System.

For example, a domain that matches specific requirements for an application you are writing. To
search for an object:

1. Open the Repository Information System.

2. Select an object category.

3. Choose Find.

The contents of the search screen depend on the object category. By default, the system
displays the standard selection fields for the object.

4. Enter search values and choose Execute.

The system displays the matches. By default, the system displays the basic list.
However, you can display an overall view by choosing Edit � Overall view.

 SAP AG BC ABAP Workbench Tools

The Repository Information System

April 2001 497

In the Settings group box in the bottom part of the search screen, you can enter the maximum
number of hits in the Max. Hits field. By default the system searches both customer and SAP
objects.

Search Results
When a search is finished, a result list appears. The utilities available on the results display
depend on the object you are searching for.

Saving Search Criteria as a Variant
You can create variants for the objects you search for frequently. A variant is a set of search
criteria. See the Getting Started [Ext.] documentation for information about creating variants. To
list the variants available for an object, choose Get variant. To save your current search criteria
as a variant, enter the criteria and choose Goto � Variant � Save as variant.

Customizing Selection Values
The Maximum no. of hits value specifies the number of matches to display. To do this, choose
Settings � User parameters from the initial screen of the Repository Information System. The
Maximum number of hits shows the number of found locations that the system will display. You
can set the Entry variant as follows:

Standard selection
criteria

Identifies the SAP_STANDARD variant. This is the default SAP
variant.

All selection criteria Specifies that all available selection criteria are available.

User-specific variant Identifies a variant created by the user. You must enter the name
of the variant in the field provided.

Where-used List
The Where-used list function is a search utility of the Repository Information System. It is
available from most screens in the ABAP Workbench. To use this function from the initial screen
of the Repository Information System, select an object type, such as Data models, and choose
Where-used list. For details on using this function, see Where-used Lists [Page 500].

Environment Analysis
You can use the environment analysis function to determine the external references of an object
(that is, the referenced objects that do not belong to the object itself). For details on using this
function, see Environment Analysis [Page 498].

BC ABAP Workbench Tools SAP AG

Environment Analysis

498 April 2001

Environment Analysis
Use
You use this function to determine the external references for an object. External references are
those objects to which your object refers but which are not defined within the object itself.

The external references for development class XYZ are all development objects from
other development classes that are referenced by at least one object from
development class XYZ.

Environment analysis is a useful function if you want to see how well an object is encapsulated. A
fully encapsulated object has no external references.

It is particulary important to determine an object’s environment before transporting objects into
other systems. You must ensure that the required environment will be present in the target
system after the transport (in other words, your object must not reference local objects).

Prerequisites
Before you can use this function, you need to specify the type of object for which you want to
determine the environment. To do this, enter the Repository Information System, place the cursor
on an object type and choose Environment.

Features
The system lists all external references to the specified object. The list is displayed sorted by
object type.

 SAP AG BC ABAP Workbench Tools

Determining the Environment

April 2001 499

Determining the Environment
1. Open the Repository Information System.

2. Position the cursor on the object type for which you want to determine the environment.

3. Choose Environment.

4. In the Environment Analysis dialog box, enter an object name.

5. If there is a list of object types for the environment analysis, you can restrict the analysis
by selecting fields.

6. If you only want to search in certain development classes, you can enter these using the
Search area function.
When you have finished making your entries, choose Copy to continue.

7. Start the environment analysis in one of the following ways:

� Start immediately: The system runs the environment analysis immediately, and
outputs a list of results.

� Start in the background: Starts the environment analysis as a background job. Once
the analysis is finished, the system sends a dialog message to tell you that the list
has been created. You can access the list by choosing Set of lists on the Repository
Information System initial screen.

Suppose you want to determine the environment for development class FBK
(vendors) You want to exclude development classes beginning with ‘S’ from your
search.

1. Open the Repository Information System.

2. Select object type development classes under Environment � Development
coordination

3. Choose Environment

4. Enter development class FBK.

5. Choose Search area and enter S* in the development class field.

6. Choose Selection options. In the dialog box, choose the appropriate option, then go
back.

7. Choose Execute.
The system displays a list of all external references to development class FBK that are
not in development classes beginning with ‘S’.

BC ABAP Workbench Tools SAP AG

Where-used Lists

500 April 2001

Where-used Lists
The Repository Information System tracks where an object is defined and where it is used. You
can create a where-used list for an object in any of the Workbench tools by choosing Utilities �
Where-used list.

When you choose the Where-used list function, the system asks you for search criteria. For
example, if you are searching for a program, the system displays the following dialog:

The output from the Where-used list function is a hit list of each location where the object is used:

From the hit list, you can select a location and then go there by choosing to Display or Change
the Object. If you choose Found locations, the system lists the line numbers where the object
was found.

 SAP AG BC ABAP Workbench Tools

Where-used Lists

April 2001 501

From Where-Used to Where Defined
From any object use in any Workbench tool, you can navigate from where an object is used to
where it is defined. To do this, you simply double-click on the object name where it is used. The
system takes you to where the object is defined.

If you click on an object definition, the system takes you to where it is used. If the object is
used in more than one place, the system prompts you to create a where-used list.

BC ABAP Workbench Tools SAP AG

The Application Hierarchy

502 April 2001

The Application Hierarchy
The Application Hierarchy displays the organization of all the applications in your R/3 system.
You can use the Application Hierarchy to look at the hierarchy of SAP applications delivered with
your system. Your company's application hierarchy is either created for you or, if you have the
authorization, by you.

To start the application hierarchy from the Workbench initial screen, choose Overview � Applic.
hierarchy � SAP or Customer.

The nodes in the application hierarchy are either title nodes or development nodes. Development
nodes have an accompanying development class indicating there are actual objects associated
with the node. Title nodes have no development class and are used to help visually organize the
hierarchy.

Whenever you assign a development class to a title node, a new development node is created.

You can use the hierarchy to locate a development class when you know the application but not
its class. This is useful, for example, when you are working in a team. If a programmer needs to
update an old application that is new to him, he can find the application's development class by
using the hierarchy.

Click on a development class to display a list of its objects.

Creating a Hierarchy
You can also use the Application Hierarchy to depict an existing application hierarchy or plan a
new application hierarchy. For example, if you wanted to add a node, you would do the following:

1. Select a node.

 SAP AG BC ABAP Workbench Tools

The Application Hierarchy

April 2001 503

The node you select will provide the top of your new hierarchy.

2. Choose Application node �Create.

The system displays the Create Node dialog box.

3. Enter a node name or a name for a development class.

The system adds a new node. If you entered a development class name, the system
uses the class short text for the node title and adds the class name to the right of the
node.

You can use this option to assign an existing class to a node or create a new class for a node.

Searching within an Application
You can branch directly from the application hierarchy to the Repository Information System. You
use this function whenever you want to restrict your search to the objects in one or more specific
applications. Example: Suppose you are looking for a particular domain used in a financial
accounting application.

To branch from the Application Hierarchy to the Repository Information System:

1. Select one or more nodes by placing the cursor on each one and choosing Select.

If you select a node, all of its subordinate nodes are also selected.
To deselect a node, double-click it.

2. Choose Repository Infosys.

The system opens the Repository Information System.

3. Use the Repository Information System [Page 496] as you normally would.

BC ABAP Workbench Tools SAP AG

The Data Browser

504 April 2001

The Data Browser
You use the Data Browser to access table entries without using an ABAP program. With the Data
Browser, you can:

� Display table records.

� Display all table field values and related text field values.

� Branch from table entries to their related check-table entries.

If a table has Table maintenance allowed set you can also create or update table records with the
Data Browser.

Displaying a Table
To start the Data Browser, choose Overview � Data Browser from the Workbench tools initial
screen. You can also reach the Data Browser from the Environment menu in the Repository
Browser or the Utilities menu in the ABAP Editor. The Data Browser prompts you for a table
name.

The selection screen lists the table's key fields, the remaining fields, and then a description of the
table size. Enter selection criteria on the selection screen to restrict the number of entries that the
system selects. To view the results of your selection, choose Execute from the selection screen.
The system displays the results.

You can see in the results display that the number of records you selected appears in the title
bar:

A status bar appears above the table display, containing the following information:

 SAP AG BC ABAP Workbench Tools

The Data Browser

April 2001 505

� Fields displayed: Shows the number of fields displayed and the actual number of fields in
the table.
To display more fields, enter a new value for the List width.

� Fixed columns: Shows the number of fixed columns. These columns do not move when
you scroll horizontally through the table.
You can enter a new value in the Fixed columns field to change the number of fixed
fields.

� List width: Number of characters displayed in the list. The standard width is 250
characters. However, you can set any width you like between 50 and 250 characters.

Both the list and detail displays show fields in different colors, depending on the field's status.
Choose Utilities � Color key to display the meanings of the different colors.

BC ABAP Workbench Tools SAP AG

Customizing the Data Browser Display

506 April 2001

Customizing the Data Browser Display
The Data Browser contains various options allowing you to customize both the selection screen
and the result screen.

The Selection Screen
To customize the selection screen and the Data Browser output, choose Settings � User
parameters. The system displays the Maintain Settings dialog box.

Setting Function

Width of output list Changes the width of the Data Browser output.

Maximal no. of hits Changes the number of entries displayed in the output.
For example, setting this value to 100 means that Data
Browser will display only the first 100 entries that match
the search criteria.

Check conversion exits Applies a table's conversion routines to the Data
Browser output.

Display maximum number of hits Displays the total number of records available that match
your search.

Keyword group box Changes how fields are labeled on the selection screen
and in the output list. If you choose Field Name the Data
Browser labels each field by its Dictionary field name. If
you choose Field text, the field is labeled by its
Dictionary description.

The system maintains your settings between SAP sessions.

Changing How Data is Sorted
You can change the way the Data Browser sorts output. To do this, choose either Sort ascending
or Sort descending on the result screen. You can also change the primary sort field.

By default, the system sorts data using the key fields as input. To specify different fields to sort
on, choose Settings � List Format � Sort.. The system displays the Enter table... sort field
dialog box. Enter a 1 by the field you want as a primary sort field, a 2 by the next sort field, and
so forth. You can sort by up to 9 fields.

Limiting the Fields Displayed
You can limit the number of fields displayed in the selection screen. To do this, choose Settings
� Selection criteria in the selection screen. The system displays the Select Fields dialog. Select
the table fields you want to appear on the selection screen. By default, all the fields are selected.

You can also limit the fields displayed in the Data Browser output. To do this, choose Settings �
List format � Select columns from the output display..

 SAP AG BC ABAP Workbench Tools

Other Data Browser Functions

April 2001 507

Other Data Browser Functions
To provide you with Data Browser capability, the system generates a table-handling program for
each new table. This program is saved in the system and is used as long as the table definition
remains the same. When the table changes, the system automatically regenerates the table-
handling program.

Sometimes you may need to regenerate the table-handling program manually. Choose
Environment � Program generation to regenerate the program.

Foreign-Key Relationships
Some fields have foreign key relationships with other tables. For these fields, you can also
display the element from the other table that corresponds to the current table field. To do this,
you first display a foreign-key table, then do the following:

1. Place the cursor on the field for which a foreign key is defined.

2. Choose Environment � Check table.

The system displays the element of the check table that corresponds to the foreign key
field you selected.

BC ABAP Workbench Tools SAP AG

Other Concepts

508 April 2001

Other Concepts
Inactive sources is a concept affecting most of the development objects in the ABAP
Workbench.
Business Add-Ins provide an additional means of enhancing the SAP Standard system.

See also:

Inactive Sources [Page 509]

Business Add-Ins [Page 527]

 SAP AG BC ABAP Workbench Tools

Inactive Sources

April 2001 509

Inactive Sources

This documentation contains the following topics:

Concept [Page 508]

Support in the Tools [Page 512]
Activating Objects [Page 514]
Overview of Inactive Objects [Page 515]
Status Display [Page 516]
Activating Classes and Interfaces [Page 519]

Effects on Operations [Page 523]

Other Effects [Page 525]

Special Considerations with Modifications [Page 526]

BC ABAP Workbench Tools SAP AG

Concept

510 April 2001

Concept
Terminology
There are three essential new terms used in the context of inactive sources:

Term Meaning

Active version The database version of a development object used to generate the
runtime object

Inactive version A saved database version of a database object that does not affect the
runtime object (even after regeneration)

Inactive object list The set of all inactive versions of development objects belonging to a
particular user. When a user edits a new object, it is added to his or her
inactive object list. When a user activates an object, it is removed from the
inactive object list.
Leaving aside local private objects ($TMP), a user's inactive object list is a
genuine subset of all of the objects he or she is working on and that are
included in open tasks administered by the Workbench Organizer.

Reasons
The introduction of inactive sources provides developers with a separate local view of the R/3
Repository, and is the basis for a "local runtime system".
Changes to development objects can be tested within this local system without disturbing the
wider development environment.

The main advantage of this is that the development process becomes seamless. For
example, it makes it possible for you to change the interface of a function module without the
changes immediately becoming visible in programs that call it. The changes are only visible
systemwide once the object has been activated

Furthermore, the concept avoids redundant program generation. Previously, the system
always generated a new load version whenever you saved a program in the ABAP Editor. The
introduction of inactive sources means that the program is not generated until you decide that it is
appropriate to activate it.

The introduction of inactive sources is accompanied by a standardization of the working methods
of the different ABAP Workbench tools. Consistency is also assured by the main program check
that is performed whenever you activate an object.

Concept
� Objects are always saved as inactive versions.

When you create or change a development object and then save it, an inactive version is
written to the database.

� Inactive objects are included in the user's inactive object list.
Development objects that have been edited and saved are placed in the inactive object list of
the developer responsible. Each user has their own inactive object list, which other users
cannot access directly. Users always work with their own personal inactive object list.

 SAP AG BC ABAP Workbench Tools

Concept

April 2001 511

� You can link inactive object lists.
If another user changes a development object and saves it, the object is included in his or
her inactive object list.

� The ABAP Workbench tools always take into account the user's inactive object list.
In display mode, the user always sees objects from his or her own inactive object list in their
inactive version, but all other objects in their active version (even if an inactive version
exists). This particularly applies to navigation within the ABAP Workbench.
In change mode, the latest version is always displayed, regardless of whether it is included
in the user's inactive object list or not.
All tools display the current status of the object that you are currently working on. For further
information, refer to Status Display [Page 516].

� You can display an overview of your work list and of all inactive objects in the system. For
further information, refer to Overview of Inactive Objects [Page 515].

� You activate your inactive object list when you choose.
Furthermore, you can decide whether to activate the whole inactive object list or just a part of
it. When you activate an object, it is removed from the inactive object list. For further
information, refer to Activating Objects [Page 514].

� Only the active version of an object is used to generate runtime objects.

� Support in the Workbench Organizer.
All members of a project team can work on a single object that belongs to the change
request in which they all have tasks. Consequently, all team members will see the inactive
version of an object in display mode, if one exists.
Users without a task in the change request cannot change the object, and therefore see the
active version in display mode.
You cannot release a transport request until all of its objects have been activated.

BC ABAP Workbench Tools SAP AG

Support in the ABAP Workbench Tools

512 April 2001

Support in the ABAP Workbench Tools
Tools that Support Inactive Sources
� ABAP Editor

� Class Builder

� Function Builder

� Screen Painter

� Menu Painter

In the ABAP Dictionary, the existing activation concept is still in place. ABAP
Dictionary objects are saved in an inactive version, but do not appear in your inactive
object list. For further information, refer to activation [Ext.] in the ABAP Dictionary.

Further Reading
Activating Objects [Page 514]

Overview of Inactive Objects [Page 515]

Status Display [Page 516]

Activating Classes and Interfaces [Page 519]

Inactive Sources and the Modification Assistant [Page 526]

Incompatible Changes
Tool Changes
ABAP Editor The 'Save' function always saves the inactive version of the object (was

previously always the active version).

The 'Check' function uses the inactive object list.

New 'Activate' functions.

New status display.

ABAP Dictionary Changed descriptions in the status display

Function Builder Previous 'Activate' function replaced. The new 'Activate' function allows
you to activate the top include and form routine include as well as the
function module.

The 'Deactivate' function has been removed.

New status display.

Screen Painter The previous 'Generate' function has been replaced by 'Activate'.

New status display.

Menu Painter The previous 'Generate' function has been replaced by 'Activate'.

New status display.

 SAP AG BC ABAP Workbench Tools

Support in the ABAP Workbench Tools

April 2001 513

BC ABAP Workbench Tools SAP AG

Activating Objects

514 April 2001

Activating Objects
Use
You can activate either your entire worklist, selected objects, or just components of one object
(classes in ABAP Objects).

Prerequisites
Before activating an object, the system checks the syntax of the entire object (main program,
function group, or class). Any syntax errors are displayed in a list. However, it is still possible to
activate objects even if they contain errors. This can be useful if you want to create templates for
coding generators.

Procedure
4. Select the relevant object in the object list.

5. Choose Activate from the context menu or the icon.
Your worklist appears. The selected object is highlighted.

6. Choose to confirm your selection.
If you are activating an include that cannot be assigned to a single main program, the system
asks you for a main program. Choose one main program from the list of programs that use
the include.
A message in the status bar informs you that the object has been successfully activated.

Result
When you activate an object, its syntax is checked. The check uses the inactive versions of the
components selected for activation, but the active versions of all other components.
The inactive versions are used to create active versions of the objects. A new runtime version is
then generated. Finally, the inactive version is deleted and removed from the list of inactive
objects.

Special Features
When you activate an entire object from the object list, only the inactive objects belonging to that
object are displayed in the worklist. However, you can display all of your inactive objects by
choosing All inactive objects.

 SAP AG BC ABAP Workbench Tools

Overview of Inactive Objects

April 2001 515

Overview of Inactive Objects
Overview
To display the overview, choose Environment � Inactive objects anywhere in the ABAP
Workbench.

Use
You can choose to display various sets of inactive development objects within the system:

Choose To

Activate the selected objects

 Request/task Display a list of all of the inactive objects that are assigned to a task
(request) in the Workbench Organizer

 User Display the inactive object list of the specified user

 Object Display all inactive components of a main program or function group

To display all inactive objects in the system

Once you have selected an object, you can open it using the relevant tool and
display or change it.
You can also place objects from another user in your own inactive object list
("networked inactive object lists") and activate them.

BC ABAP Workbench Tools SAP AG

Status Display

516 April 2001

Status Display
The current status of a development object is always displayed in the tool with which you are
editing it.
The status indicates:

� Whether a database version exists for an existing development object (new �
active/inactive).

� Whether the current state of the object corresponds to the state of the object in the database
(revised � saved).
The status saved is not explicitly displayed. Objects are always saved as inactive.

� Whether the database version is inactive or active (inactive �active).

The following versions of development objects may appear in the status display:

 SAP AG BC ABAP Workbench Tools

 Status Display

April 2001 517

Activate

ChangeChange

 Save

InactiveInactiveInactive(revised)Inactive(revised) ActiveActive

Save

Active(revised)Active(revised)

Activate

NewNew

Save

 Create

 Create

When you create a new object, there are two possible status displays. If, for
example, you create a function module, it is already saved, and therefore has a
corresponding inactive version in the database. The status display in the Function
Builder therefore says Inactive.
On the other hand, a new GUI status does not exist in the database until you save it,
and consequently has the status New in the Menu Painter.

Another source code version occurs immediately after you have loaded a program
from temporary storage; in this case, the status is Temp. version (changed).

BC ABAP Workbench Tools SAP AG

Status Display

518 April 2001

 SAP AG BC ABAP Workbench Tools

Activating Classes and Interfaces

April 2001 519

Activating Classes and Interfaces
Significance of Activation
When you create runtime instances, the system always uses active sources. You should
remember this when instantiating classes (CREATE OBJECT statement), since this always
refers to the activated class. All components of the corresponding global class that you want to
access in the calling program must be activated explicitly.

Components of Global Classes
All global classes have an entry in table TADIR. The corresponding transport object for a class
has the name R3TR CLAS <class name> and contains a range of components, each of which
is a separate transport unit. Inactive class components appear in your worklist.

BC ABAP Workbench Tools SAP AG

Activating Classes and Interfaces

520 April 2001

 SAP AG BC ABAP Workbench Tools

Activating Classes and Interfaces

April 2001 521

TADIRTADIR

R3TR CLAS <class name>

CLSD

CPRO

CPUB

CPRI

CREP

METH

REPT

MAPP

Basic data (including inheritance)

Public components

Protected components

Private components

Local type declarations

Method implementations

Text elements

Mapping data

� The basic data and public components of a class cannot be activated separately.

� Only the basic data and public, protected, and private sections of a class affect the status
display in the class editor. If you activate the entire transport object and then change a
method implementation, the status remains active.

Components of Global Interfaces
The transport object for an interface has the name R3TR INTF <interface name>. It contains a
single object with the name INTF.

When you activate a class that implements an interface, you must ensure that the
interface has already been activated. Otherwise, the public section of the class
contains a syntax error.

Status Display in the Class Builder
The current status of a class or interface is always displayed in the class editor. It is determined
by the:

� Runtime relevance (Implemented � only modeled)

BC ABAP Workbench Tools SAP AG

Activating Classes and Interfaces

522 April 2001

� Database state (Revised � Saved)

� Activation (inactive�active)

There are eight possible statuses of classes or interfaces that can appear in the class editor:

Activate

Change

Change

Save

Implemented/inact. Implemented/inactive(revised) Impl./active

Only modeled/inact. Only modeled/inact.(revised) Only modeled/act.

Save

Implemented/active(revised)

Only modeled/act.(revised)

 SAP AG BC ABAP Workbench Tools

Effect of Inactive Sources on Operations

April 2001 523

Effect of Inactive Sources on Operations
The inactive sources concept affects the following operations within the ABAP Workbench:

Save Saves the object in an inactive version without a syntax
check. Enters the object in your inactive object list.

Activate Creates an active version from the existing inactive version.
If an object contains components (like classes in ABAP
Objects), you can activate individual components.
Before activating the object, the system checks the syntax
of the entire object, then creates an active version,
generates a runtime version, and deletes the
corresponding entry from your inactive object list.

Generate Creates a new runtime version from the existing active
version. Unlike the 'Activate' function, this function only
generates a new load version.

Display Active/Inactive Sources If an object exists in both active and inactive versions, you
can switch between the versions in the ABAP Workbench
tools.

Delete Both active and inactive versions are deleted.

Note that when you delete components of a global class in
the Class Builder, they reappear in your inactive object list
with the "Delete" icon. They are not finally deleted or
removed from your inactive object list until you activate the
relevant objects.

Copy The system uses the active version of the source object,
except in the Function Builder, where it asks you which
version you want to copy if both an active and an inactive
version exist). The new copy is always inactive.

Rename Applies to both the active and inactive versions of an
object.

Syntax check Uses your inactive object list.

Execute A runtime object can only be generated from a
syntactically-correct active version. The inactive version of
an executable program can be run from the ABAP Editor. If
you execute a program from the object list, there must be
an active version.

Transport Only active objects can be transported. You cannot release
a transport request until all objects have been activated.

BC ABAP Workbench Tools SAP AG

Effect of Inactive Sources on Operations

524 April 2001

 SAP AG BC ABAP Workbench Tools

Further Effects

April 2001 525

Further Effects
The list below contains other functions that are affected by inactive sources:

Object list (SE80) Displays all active and inactive objects. If an inactive version exists, the
object is highlighted.

Status display See Status display [Page 516] in the tools.

Where-used list Like the object list, the where-used list is global, not user-specific. It is
based on all objects.

Navigation Navigation is user-specific, and takes your inactive object list into account.
If an inactive version of an object exists and the object is in your inactive
object list, you will see that inactive version. Otherwise, the active version
is always displayed. This does not apply only to navigation in the various
ABAP Workbench tools, but also from the object list or from a where-used
list.

Debugging The Debugger always displays the active version of an object.

Modifications See Inactive Sources and Modifications [Page 526].

BC ABAP Workbench Tools SAP AG

Inactive Sources and Modifications

526 April 2001

Inactive Sources and Modifications
This section explains how inactive sources work in conjunction with the Modification Assistant
and how you can make modifications to global ABAP classes and interfaces.

Modifications
If you modify an original component of the SAP standard system without using the Modification
Assistant, inactive sources are effective in all tools. Consequently, the modified object is saved in
its inactive version.

If you modify an original component of the SAP standard system using the Modification Assistant,
inactive sources are not currently supported. Modified components, with the exception of ABAP
Dictionary objects, screens, and GUI statuses, are saved in their active version. In the ABAP
Dictionary, the conventional 'Activate' function is still relevant. Similarly, in the Screen Painter and
Menu Painter, the old 'Generate' function must still be used.

Modifications and ABAP Objects
Global interfaces, classes, and their components are not currently supported by the
Modification Assistant. However, inactive sources already apply when you change global
classes and interfaces in the Class Builder. If you modify a method implementation in a global
class supplied by SAP, the changes are stored in an inactive version.
Modifications to global classes or interfaces and their components have to be adjusted in an
upgrade in the conventional way.

 SAP AG BC ABAP Workbench Tools

Business Add-Ins

April 2001 527

Business Add-Ins
Business Add-Ins are a new SAP enhancement technique based on ABAP Objects. They can be
inserted into the SAP System to accommodate user requirements too specific to be included in
the standard delivery. Since specific industries often require special functions, SAP allows you to
predefine these points in your software.

As with customer exits (SMOD/CMOD [Ext.]), two different views are available:

� In the definition view, an application programmer predefines exit points in a source that allow
specific industry sectors, partners, and customers to attach additional software to standard
SAP source code without having to modify the original object.

� In the implementation view, the users of Business Add-Ins can customize the logic they need
or use a standard logic if one is available.

In contrast to customer exits, Business Add-Ins no longer assume a two-system infrastructure
(SAP and customers), but instead allow for multiple levels of software development (by SAP,
partners, and customers, and as country versions, industry solutions, and the like). Definitions
and implementations of Business Add-Ins can be created at each level within such a system
infrastructure.

SAP guarantees the upward compatibility of all Business Add-In interfaces. Release upgrades do
not affect enhancement calls from within the standard software nor do they affect the validity of
call interfaces. You do not have to register Business Add-Ins in SSCR.

The Business Add-In enhancement technique differentiates between enhancements that can
only be implemented once and enhancements that can be used actively by any number of
customers at the same time.

In addition, Business Add-Ins can be defined according to filter values. This allows you to control
add-in implementation and make it dependent on specific criteria (on a specific Country value, for
example).
All ABAP sources, screens, GUIs, and table interfaces created using this enhancement
technique are defined in a manner that allows customers to include their own enhancements in
the standard.

A single Business Add-In contains all of the interfaces necessary to implement a specific task. In
Release 4.6A, program and menu enhancements can be made with Business Add-Ins.
The actual program code is enhanced using ABAP Objects. In order to better understand the
programming techniques behind the Business Add-In enhancement concept, SAP recommends
reading the section on ABAP Objects [Ext.].

More information about Business Add-Ins is contained in the following sections:

Business Add-Ins: Architecture [Ext.]

A Comparison of Different Enhancement Techniques [Ext.]

Defining Business Add-Ins [Ext.]

Calling Add-Ins from Application Programs [Ext.]

Implementing Business Add-Ins [Ext.]

Filter-Dependent Business Add-Ins [Ext.]

Multiple Use Business Add-Ins [Ext.]

BC ABAP Workbench Tools SAP AG

Business Add-Ins

528 April 2001

Menu Enhancements [Ext.]

Business Add-Ins: Import Procedure [Ext.]

